经典同步问题

一、哲学家就餐问题

先来看看哲学家就餐的问题描述:

  • 5 个老大哥哲学家,闲着没事做,围绕着一张圆桌吃面;
  • 巧就巧在,这个桌子只有 5 支叉子,每两个哲学家之间放一支叉子;
  • 哲学家围在一起先思考,思考中途饿了就会想进餐;
  • 奇葩的是,这些哲学家要两支叉子才愿意吃面,也就是需要拿到左右两边的叉子才进餐
  • 吃完后,会把两支叉子放回原处,继续思考

那么问题来了,如何保证哲 学家们的动作有序进行,而不会出现有人永远拿不到叉子呢?

1.方案一

我们用信号量的方式,也就是 PV 操作来尝试解决它,代码如下:

上面的程序,好似很自然。拿起叉子用 P 操作,代表有叉子就直接用,没有叉子时就等待其他哲学家放回叉子。

不过,这种解法存在一个极端的问题:假设五位哲学家同时拿起左边的叉子,桌面上就没有叉子了, 这样就没有人能够拿到他们右边的叉子,也就说每一位哲学家都会在 P(fork[(i + 1) % N ]) 这条语句阻塞了,很明显这发生了死锁的现象

2.方案二

既然「方案一」会发生同时竞争左边叉子导致死锁的现象,那么我们就在拿叉子前,加个互斥信号量,代码如下:

上面程序中的互斥信号量的作用就在于,只要有一个哲学家进入了「临界区」,也就是准备要拿叉子时,其他哲学家都不能动,只有这位哲学家用完叉子了,才能轮到下一个哲学家进餐

方案二虽然能让哲学家们按顺序吃饭,但是每次进餐只能有一位哲学家,而桌面上是有 5 把叉子,按道理是能可以有两个哲学家同时进餐的,所以从效率角度上,这不是最好的解决方案。

(设置 1 个临界区以实现 1个哲学家 “同时”拿起左右 2把叉子的效果。 即进入临界区之后,保证成功获取到左右 2 把叉子 并 执行相关代码后,才退出临界区。

是在成功拿起左右叉子之后就退出临界区,而“只让1个哲学家就餐”是在拿起左右叉子 + 吃意面 + 放下左右叉子 一套流程走完之后才退出临界区。)

3.方案三

那既然方案二使用互斥信号量,会导致只能允许一个哲学家就餐,那么我们就不用它。

另外,方案一的问题在于,会出现所有哲学家同时拿左边刀叉的可能性,那我们就避免哲学家可以同时拿左边的刀叉,采用分支结构,根据哲学家的编号的不同,而采取不同的动作。

即让偶数编号的哲学家「先拿左边的叉子后拿右边的叉子」,奇数编号的哲学家「先拿右边的叉子后拿左边的叉子」

上面的程序,在 P 操作时,根据哲学家的编号不同,拿起左右两边叉子的顺序不同。另外,V 操作是不需要分支的,因为 V 操作是不会阻塞的。

方案三即不会出现死锁,也可以两人同时进餐。

4.方案四

在这里再提出另外一种可行的解决方案,我们用一个数组 state 来记录每一位哲学家的三个状态,分别是在进餐状态、思考状态、饥饿状态(正在试图拿叉子)

那么,一个哲学家只有在两个邻居都没有进餐时,才可以进入进餐状态

第 i 个哲学家的左邻右舍,则由宏 LEFT 和 RIGHT 定义:

  • LEFT : ( i + 5 - 1 ) % 5
  • RIGHT : ( i + 1 ) % 5

比如 i 为 2,则 LEFT 为 1,RIGHT 为 3。

具体代码实现如下:

上面的程序使用了一个信号量数组,每个信号量对应一位哲学家,这样在所需的叉子被占用时,想进餐的哲学家就被阻塞。

注意,每个进程/线程将 smart_person 函数作为主代码运行,而其他 take_forksput_forks 和 test 只是普通的函数,而非单独的进程/线程。

方案四同样不会出现死锁,也可以两人同时进餐。

二、读者-写者问题

前面的「哲学家进餐问题」对于互斥访问有限的竞争问题(如 I/O 设备)一类的建模过程十分有用。

另外,还有个著名的问题是「读者-写者」,它为数据库访问建立了一个模型。

读者只会读取数据,不会修改数据,而写者即可以读也可以修改数据。

读者-写者的问题描述:

  • 「读-读」允许:同一时刻,允许多个读者同时读
  • 「读-写」互斥:没有写者时读者才能读,没有读者时写者才能写
  • 「写-写」互斥:没有其他写者时,写者才能写

接下来,提出几个解决方案来分析分析。

1.方案一

使用信号量的方式来尝试解决:

  • 信号量 wMutex:控制写操作的互斥信号量,初始值为 1 ;
  • 读者计数 rCount:正在进行读操作的读者个数,初始化为 0;
  • 信号量 rCountMutex:控制对 rCount 读者计数器的互斥修改,初始值为 1;

接下来看看代码的实现:

上面的这种实现,是读者优先的策略,因为只要有读者正在读的状态,后来的读者都可以直接进入,如果读者持续不断进入,则写者会处于饥饿状态。

2.方案二

那既然有读者优先策略,自然也有写者优先策略:

  • 只要有写者准备要写入,写者应尽快执行写操作,后来的读者就必须阻塞;
  • 如果有写者持续不断写入,则读者就处于饥饿;

在方案一的基础上新增如下变量:

  • 信号量 rMutex:控制读者进入的互斥信号量,初始值为 1;
  • 信号量 wDataMutex:控制写者写操作的互斥信号量,初始值为 1;
  • 写者计数 wCount:记录写者数量,初始值为 0;
  • 信号量 wCountMutex:控制 wCount 互斥修改,初始值为 1;

具体实现如下代码:

注意,这里 rMutex 的作用,开始有多个读者读数据,它们全部进入读者队列,此时来了一个写者,执行了 P(rMutex) 之后,后续的读者由于阻塞在 rMutex 上,都不能再进入读者队列,而写者到来,则可以全部进入写者队列,因此保证了写者优先

同时,第一个写者执行了 P(rMutex) 之后,也不能马上开始写,必须等到所有进入读者队列的读者都执行完读操作,通过 V(wDataMutex) 唤醒写者的写操作。

3.方案三

既然读者优先策略和写者优先策略都会造成饥饿的现象,那么我们就来实现一下公平策略。

公平策略:

  • 优先级相同;
  • 写者、读者互斥访问;
  • 只能一个写者访问临界区;
  • 可以有多个读者同时访问临界资源;

具体代码实现:

看完代码不知你是否有这样的疑问,为什么加了一个信号量 flag,就实现了公平竞争?

对比方案一的读者优先策略,可以发现,读者优先中只要后续有读者到达,读者就可以进入读者队列, 而写者必须等待,直到没有读者到达。

没有读者到达会导致读者队列为空,即 rCount==0,此时写者才可以进入临界区执行写操作。

而这里 flag 的作用就是阻止读者的这种特殊权限(特殊权限是只要读者到达,就可以进入读者队列)。

比如:开始来了一些读者读数据,它们全部进入读者队列,此时来了一个写者,执行 P(flag) 操作,使得后续到来的读者都阻塞在 flag 上,不能进入读者队列,这会使得读者队列逐渐为空,即 rCount 减为 0。

这个写者也不能立马开始写(因为此时读者队列不为空),会阻塞在信号量 wDataMutex 上,读者队列中的读者全部读取结束后,最后一个读者进程执行 V(wDataMutex),唤醒刚才的写者,写者则继续开始进行写操作。

posted @ 2022-12-11 13:02  ImreW  阅读(30)  评论(0编辑  收藏  举报