关注我,每天一篇大数据开发面试文章,挺进大厂!2021年全套大数据面试题开始更新!

Flink异步之矛盾-锋利的Async I/O

维表JOIN-绕不过去的业务场景

在Flink 流处理过程中,经常需要和外部系统进行交互,用维度表补全事实表中的字段。

例如:在电商场景中,需要一个商品的skuid去关联商品的一些属性,例如商品所属行业、商品的生产厂家、生产厂家的一些情况;
在物流场景中,知道包裹id,需要去关联包裹的行业属性、发货信息、收货信息等等。

默认情况下,在Flink的MapFunction中,单个并行只能用同步方式去交互: 将请求发送到外部存储,IO阻塞,等待请求返回,然后继续发送下一个请求。这种同步交互的方式往往在网络等待上就耗费了大量时间。为了提高处理效率,可以增加MapFunction的并行度,但增加并行度就意味着更多的资源,并不是一种非常好的解决方式。

Async I/O异步非阻塞请求

Flink 在1.2中引入了Async I/O,在异步模式下,将IO操作异步化,单个并行可以连续发送多个请求,哪个请求先返回就先处理,从而在连续的请求间不需要阻塞式等待,大大提高了流处理效率。

Async I/O 是阿里巴巴贡献给社区的一个呼声非常高的特性,解决与外部系统交互时网络延迟成为了系统瓶颈的问题。

file

图中棕色的长条表示等待时间,可以发现网络等待时间极大地阻碍了吞吐和延迟。为了解决同步访问的问题,异步模式可以并发地处理多个请求和回复。也就是说,你可以连续地向数据库发送用户a、b、c等的请求,与此同时,哪个请求的回复先返回了就处理哪个回复,从而连续的请求之间不需要阻塞等待,如上图右边所示。这也正是 Async I/O 的实现原理。

详细的原理可以参考文末给出的第一个链接,来自阿里巴巴云邪的分享。

一个简单的例子如下:

public class AsyncIOFunctionTest {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        env.setParallelism(1);

        Properties p = new Properties();
        p.setProperty("bootstrap.servers", "localhost:9092");

        DataStreamSource<String> ds = env.addSource(new FlinkKafkaConsumer010<String>("order", new SimpleStringSchema(), p));
        ds.print();

        SingleOutputStreamOperator<Order> order = ds
                .map(new MapFunction<String, Order>() {
                    @Override
                    public Order map(String value) throws Exception {
                        return new Gson().fromJson(value, Order.class);
                    }
                })
                .assignTimestampsAndWatermarks(new AscendingTimestampExtractor<Order>() {
                    @Override
                    public long extractAscendingTimestamp(Order element) {
                        try {
                            return element.getOrderTime();
                        } catch (Exception e) {
                            e.printStackTrace();
                        }
                        return 0;
                    }
                })
                .keyBy(new KeySelector<Order, String>() {
                    @Override
                    public String getKey(Order value) throws Exception {
                        return value.getUserId();
                    }
                })
                .window(TumblingEventTimeWindows.of(Time.minutes(10)))
                .maxBy("orderTime");

        SingleOutputStreamOperator<Tuple7<String, String, Integer, String, String, String, Long>> operator = AsyncDataStream
                .unorderedWait(order, new RichAsyncFunction<Order, Tuple7<String, String, Integer, String, String, String, Long>>() {

                    private Connection connection;

                    @Override
                    public void open(Configuration parameters) throws Exception {
                        super.open(parameters);
                        Class.forName("com.mysql.jdbc.Driver");
                        connection = DriverManager.getConnection("url", "user", "pwd");
                        connection.setAutoCommit(false);
                    }

                    @Override
                    public void asyncInvoke(Order input, ResultFuture<Tuple7<String, String, Integer, String, String, String, Long>> resultFuture) throws Exception {
                        List<Tuple7<String, String, Integer, String, String, String, Long>> list = new ArrayList<>();
                        // 在 asyncInvoke 方法中异步查询数据库
                        String userId = input.getUserId();
                        Statement statement = connection.createStatement();
                        ResultSet resultSet = statement.executeQuery("select name,age,sex from user where userid=" + userId);
                        if (resultSet != null && resultSet.next()) {
                            String name = resultSet.getString("name");
                            int age = resultSet.getInt("age");
                            String sex = resultSet.getString("sex");
                            Tuple7<String, String, Integer, String, String, String, Long> res = Tuple7.of(userId, name, age, sex, input.getOrderId(), input.getPrice(), input.getOrderTime());
                            list.add(res);
                        }

                        // 将数据搜集
                        resultFuture.complete(list);
                    }

                    @Override
                    public void close() throws Exception {
                        super.close();
                        if (connection != null) {
                            connection.close();
                        }
                    }
                }, 5000, TimeUnit.MILLISECONDS,100);

        operator.print();


        env.execute("AsyncIOFunctionTest");
    }
}

上述代码中,原始订单流来自Kafka,去关联维度表将订单的用户信息取出来。从上面示例中可看到,我们在open()中创建连接对象,在close()方法中关闭连接,在RichAsyncFunction的asyncInvoke()方法中,直接查询数据库操作,并将数据返回出去。这样一个简单异步请求就完成了。

Async I/O的原理和基本用法

简单的来说,使用 Async I/O 对应到 Flink 的 API 就是 RichAsyncFunction 这个抽象类,继层这个抽象类实现里面的open(初始化),asyncInvoke(数据异步调用),close(停止的一些操作)方法,最主要的是实现asyncInvoke 里面的方法。

我们先来看一个使用Async I/O的模板方法:


// This example implements the asynchronous request and callback with Futures that have the
// interface of Java 8's futures (which is the same one followed by Flink's Future)

/**
 * An implementation of the 'AsyncFunction' that sends requests and sets the callback.
 */
class AsyncDatabaseRequest extends RichAsyncFunction<String, Tuple2<String, String>> {

    /** The database specific client that can issue concurrent requests with callbacks */
    private transient DatabaseClient client;

    @Override
    public void open(Configuration parameters) throws Exception {
        client = new DatabaseClient(host, post, credentials);
    }

    @Override
    public void close() throws Exception {
        client.close();
    }

    @Override
    public void asyncInvoke(String key, final ResultFuture<Tuple2<String, String>> resultFuture) throws Exception {

        // issue the asynchronous request, receive a future for result
        final Future<String> result = client.query(key);

        // set the callback to be executed once the request by the client is complete
        // the callback simply forwards the result to the result future
        CompletableFuture.supplyAsync(new Supplier<String>() {

            @Override
            public String get() {
                try {
                    return result.get();
                } catch (InterruptedException | ExecutionException e) {
                    // Normally handled explicitly.
                    return null;
                }
            }
        }).thenAccept( (String dbResult) -> {
            resultFuture.complete(Collections.singleton(new Tuple2<>(key, dbResult)));
        });
    }
}

// create the original stream
DataStream<String> stream = ...;

// apply the async I/O transformation
DataStream<Tuple2<String, String>> resultStream =
    AsyncDataStream.unorderedWait(stream, new AsyncDatabaseRequest(), 1000, TimeUnit.MILLISECONDS, 100);

假设我们一个场景是需要进行异步请求其他数据库,那么要实现一个通过异步I/O来操作数据库还需要三个步骤:
  1、实现用来分发请求的AsyncFunction
  2、获取操作结果的callback,并将它提交到AsyncCollector中
  3、将异步I/O操作转换成DataStream

其中的两个重要的参数:

Timeouttimeout 定义了异步操作过了多长时间后会被丢弃,这个参数是防止了死的或者失败的请求
Capacity 这个参数定义了可以同时处理多少个异步请求。虽然异步I/O方法会带来更好的吞吐量,但是算子仍然会成为流应用的瓶颈。超过限制的并发请求数量会产生背压。

几个需要注意的点:

  • 使用Async I/O,需要外部存储有支持异步请求的客户端。

  • 使用Async I/O,继承RichAsyncFunction(接口AsyncFunction<IN, OUT>的抽象类),重写或实现open(建立连接)、close(关闭连接)、asyncInvoke(异步调用)3个方法即可。

  • 使用Async I/O, 最好结合缓存一起使用,可减少请求外部存储的次数,提高效率。

  • Async I/O 提供了Timeout参数来控制请求最长等待时间。默认,异步I/O请求超时时,会引发异常并重启或停止作业。 如果要处理超时,可以重写AsyncFunction#timeout方法。

  • Async I/O 提供了Capacity参数控制请求并发数,一旦Capacity被耗尽,会触发反压机制来抑制上游数据的摄入。

  • Async I/O 输出提供乱序和顺序两种模式。

      乱序, 用AsyncDataStream.unorderedWait(...) API,每个并行的输出顺序和输入顺序可能不一致。
    
      顺序, 用AsyncDataStream.orderedWait(...) API,每个并行的输出顺序和输入顺序一致。为保证顺序,需要在输出的Buffer中排序,该方式效率会低一些。
    

由于新合入的 Blink 相关功能,使得 Flink 1.9 实现维表功能很简单。
如果你要使用该功能,那就需要自己引入 Blink 的 Planner。

<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
	<version>${flink.version}</version>
</dependency>

然后我们只要自定义实现 LookupableTableSource 接口,同时实现里面的方法就可以进行,下面来分析一下 LookupableTableSource的代码:

public interface LookupableTableSource<T> extends TableSource<T> {
     TableFunction<T> getLookupFunction(String[] lookupKeys);
     AsyncTableFunction<T> getAsyncLookupFunction(String[] lookupKeys);
     boolean isAsyncEnabled();
}

这三个方法分别是:

  • isAsyncEnabled 方法主要表示该表是否支持异步访问外部数据源获取数据,当返回 true 时,那么在注册到 TableEnvironment 后,使用时会返回异步函数进行调用,当返回 false 时,则使同步访问函数。

  • getLookupFunction 方法返回一个同步访问外部数据系统的函数,什么意思呢,就是你通过 Key 去查询外部数据库,需要等到返回数据后才继续处理数据,这会对系统处理的吞吐率有影响。

  • getAsyncLookupFunction 方法则是返回一个异步的函数,异步访问外部数据系统,获取数据,这能极大的提升系统吞吐率。

我们抛开同步访问函数不管,对于getAsyncLookupFunction会返回异步访问外部数据源的函数,如果你想使用异步函数,前提是 LookupableTableSource 的 isAsyncEnabled 方法返回 true 才能使用。使用异步函数访问外部数据系统,一般是外部系统有异步访问客户端,如果没有的话,可以自己使用线程池异步访问外部系统。例如:

public class MyAsyncLookupFunction extends AsyncTableFunction<Row> {
    private transient RedisAsyncCommands<String, String> async;
    @Override
    public void open(FunctionContext context) throws Exception {
        RedisClient redisClient = RedisClient.create("redis://127.0.0.1:6379");
        StatefulRedisConnection<String, String> connection = redisClient.connect();
        async = connection.async();
    }
    public void eval(CompletableFuture<Collection<Row>> future, Object... params) {
        redisFuture.thenAccept(new Consumer<String>() {
            @Override
            public void accept(String value) {
                future.complete(Collections.singletonList(Row.of(key, value)));
            }
        });
    }
}


一个完整的例子如下:

Main方法:


import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.junit.Test;
 
import java.util.Properties;
 
public class LookUpAsyncTest {
 
    @Test
    public void test() throws Exception {
        LookUpAsyncTest.main(new String[]{});
    }
 
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //env.setParallelism(1);
        EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);
 
        final ParameterTool params = ParameterTool.fromArgs(args);
        String fileName = params.get("f");
        DataStream<String> source = env.readTextFile("hdfs://172.16.44.28:8020" + fileName, "UTF-8");
 
        TypeInformation[] types = new TypeInformation[]{Types.STRING, Types.STRING, Types.LONG};
        String[] fields = new String[]{"id", "user_click", "time"};
        RowTypeInfo typeInformation = new RowTypeInfo(types, fields);
 
        DataStream<Row> stream = source.map(new MapFunction<String, Row>() {
            private static final long serialVersionUID = 2349572543469673349L;
 
            @Override
            public Row map(String s) {
                String[] split = s.split(",");
                Row row = new Row(split.length);
                for (int i = 0; i < split.length; i++) {
							
                    Object value = split[i];
                    if (types[i].equals(Types.STRING)) {
                        value = split[i];
                    }
                    if (types[i].equals(Types.LONG)) {
                        value = Long.valueOf(split[i]);
                    }
                    row.setField(i, value);
                }
                return row;
            }
        }).returns(typeInformation);
 
        tableEnv.registerDataStream("user_click_name", stream, String.join(",", typeInformation.getFieldNames()) + ",proctime.proctime");
 
        RedisAsyncLookupTableSource tableSource = RedisAsyncLookupTableSource.Builder.newBuilder()
                .withFieldNames(new String[]{"id", "name"})
                .withFieldTypes(new TypeInformation[]{Types.STRING, Types.STRING})
                .build();
        tableEnv.registerTableSource("info", tableSource);
 
        String sql = "select t1.id,t1.user_click,t2.name" +
                " from user_click_name as t1" +
                " join info FOR SYSTEM_TIME AS OF t1.proctime as t2" +
                " on t1.id = t2.id";
 
        Table table = tableEnv.sqlQuery(sql);
 
        DataStream<Row> result = tableEnv.toAppendStream(table, Row.class);
 
        DataStream<String> printStream = result.map(new MapFunction<Row, String>() {
            @Override
            public String map(Row value) throws Exception {
                return value.toString();
            }
        });
 
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "127.0.0.1:9094");
        FlinkKafkaProducer011<String> kafkaProducer = new FlinkKafkaProducer011<>(
                "user_click_name",  
                new SimpleStringSchema(),
                properties);
        printStream.addSink(kafkaProducer);
 
        tableEnv.execute(Thread.currentThread().getStackTrace()[1].getClassName());
    }
}

RedisAsyncLookupTableSource方法:

import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.TableSchema;
import org.apache.flink.table.functions.AsyncTableFunction;
import org.apache.flink.table.functions.TableFunction;
import org.apache.flink.table.sources.LookupableTableSource;
import org.apache.flink.table.sources.StreamTableSource;
import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.utils.TypeConversions;
import org.apache.flink.types.Row;
 
public class RedisAsyncLookupTableSource implements StreamTableSource<Row>, LookupableTableSource<Row> {
 
    private final String[] fieldNames;
    private final TypeInformation[] fieldTypes;
 
    public RedisAsyncLookupTableSource(String[] fieldNames, TypeInformation[] fieldTypes) {
       this.fieldNames = fieldNames;
        this.fieldTypes = fieldTypes;
    }
 
    //同步方法
    @Override
    public TableFunction<Row> getLookupFunction(String[] strings) {
        return null;
    }
 
    //异步方法
    @Override
    public AsyncTableFunction<Row> getAsyncLookupFunction(String[] strings) {
        return MyAsyncLookupFunction.Builder.getBuilder()
                .withFieldNames(fieldNames)
                .withFieldTypes(fieldTypes)
                .build();
    }
 
    //开启异步
    @Override
    public boolean isAsyncEnabled() {
        return true;
    }
 
    @Override
    public DataType getProducedDataType() {
        return TypeConversions.fromLegacyInfoToDataType(new RowTypeInfo(fieldTypes, fieldNames));
    }
 
    @Override
    public TableSchema getTableSchema() {
        return TableSchema.builder()
                .fields(fieldNames, TypeConversions.fromLegacyInfoToDataType(fieldTypes))
                .build();
    }
 
    @Override
    public DataStream<Row> getDataStream(StreamExecutionEnvironment environment) {
        throw new UnsupportedOperationException("do not support getDataStream");
    }
 
    public static final class Builder {
        private String[] fieldNames;
        private TypeInformation[] fieldTypes;
 
        private Builder() {
        }
 
        public static Builder newBuilder() {
            return new Builder();
        }
 
        public Builder withFieldNames(String[] fieldNames) {
            this.fieldNames = fieldNames;
            return this;
        }
 
        public Builder withFieldTypes(TypeInformation[] fieldTypes) {
            this.fieldTypes = fieldTypes;
            return this;
        }
 
        public RedisAsyncLookupTableSource build() {
            return new RedisAsyncLookupTableSource(fieldNames, fieldTypes);
        }
    }
}

MyAsyncLookupFunction


import io.lettuce.core.RedisClient;
import io.lettuce.core.RedisFuture;
import io.lettuce.core.api.StatefulRedisConnection;
import io.lettuce.core.api.async.RedisAsyncCommands;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.typeutils.RowTypeInfo;
import org.apache.flink.table.functions.AsyncTableFunction;
import org.apache.flink.table.functions.FunctionContext;
import org.apache.flink.types.Row;
 
import java.util.Collection;
import java.util.Collections;
import java.util.concurrent.CompletableFuture;
import java.util.function.Consumer;
 
public class MyAsyncLookupFunction extends AsyncTableFunction<Row> {
 
    private final String[] fieldNames;
    private final TypeInformation[] fieldTypes;
 
    private transient RedisAsyncCommands<String, String> async;
 
    public MyAsyncLookupFunction(String[] fieldNames, TypeInformation[] fieldTypes) {
        this.fieldNames = fieldNames;
        this.fieldTypes = fieldTypes;
    }
 
    @Override
    public void open(FunctionContext context) {
        //配置redis异步连接
        RedisClient redisClient = RedisClient.create("redis://127.0.0.1:6379");
        StatefulRedisConnection<String, String> connection = redisClient.connect();
        async = connection.async();
    }
 
    //每一条流数据都会调用此方法进行join
    public void eval(CompletableFuture<Collection<Row>> future, Object... paramas) {
        //表名、主键名、主键值、列名
        String[] info = {"userInfo", "userId", paramas[0].toString(), "userName"};
        String key = String.join(":", info);
        RedisFuture<String> redisFuture = async.get(key);
 
        redisFuture.thenAccept(new Consumer<String>() {
            @Override
            public void accept(String value) {
                future.complete(Collections.singletonList(Row.of(key, value)));
                //todo
//                BinaryRow row = new BinaryRow(2);
            }
        });
    }
 
    @Override
    public TypeInformation<Row> getResultType() {
        return new RowTypeInfo(fieldTypes, fieldNames);
    }
 
    public static final class Builder {
        private String[] fieldNames;
        private TypeInformation[] fieldTypes;
 
        private Builder() {
        }
 
        public static Builder getBuilder() {
            return new Builder();
        }
 
        public Builder withFieldNames(String[] fieldNames) {
            this.fieldNames = fieldNames;
            return this;
        }
 
        public Builder withFieldTypes(TypeInformation[] fieldTypes) {
            this.fieldTypes = fieldTypes;
            return this;
        }
 
        public MyAsyncLookupFunction build() {
            return new MyAsyncLookupFunction(fieldNames, fieldTypes);
        }
    }
}

十分需要注意的几个点:

1、 外部数据源必须是异步客户端:如果是线程安全的(多个客户端一起使用),你可以不加 transient 关键字,初始化一次。否则,你需要加上 transient,不对其进行初始化,而在 open 方法中,为每个 Task 实例初始化一个。

2、eval 方法中多了一个 CompletableFuture,当异步访问完成时,需要调用其方法进行处理。比如上面例子中的:

redisFuture.thenAccept(new Consumer<String>() {
            @Override
            public void accept(String value) {
                future.complete(Collections.singletonList(Row.of(key, value)));
            }
        });

3、社区虽然提供异步关联维度表的功能,但事实上大数据量下关联外部系统维表仍然会成为系统的瓶颈,所以一般我们会在同步函数和异步函数中加入缓存。综合并发、易用、实时更新和多版本等因素考虑,Hbase是最理想的外部维表。

参考文章:
http://wuchong.me/blog/2017/05/17/flink-internals-async-io/#
https://www.jianshu.com/p/d8f99d94b761
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65870673
https://www.jianshu.com/p/7ce84f978ae0

声明:本号所有文章除特殊注明,都为原创,公众号读者拥有优先阅读权,未经作者本人允许不得转载,否则追究侵权责任。

关注我的公众号,后台回复【JAVAPDF】获取200页面试题!
5万人关注的大数据成神之路,不来了解一下吗?
5万人关注的大数据成神之路,真的不来了解一下吗?
5万人关注的大数据成神之路,确定真的不来了解一下吗?

欢迎您关注《大数据成神之路》

大数据技术与架构

posted @ 2020-01-10 22:28  王知无  阅读(3453)  评论(1编辑  收藏  举报