[LeetCode] Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
Given the following binary search tree: root = [3,5,1,6,2,0,8,null,null,7,4]
_______3______ / \ ___5__ ___1__ / \ / \ 6 _2 0 8 / \ 7 4
Example 1:
Input: root, p = 5, q = 1 Output: 3 Explanation: The LCA of of nodes5
and1
is3.
Example 2:
Input: root, p = 5, q = 4 Output: 5 Explanation: The LCA of nodes5
and4
is5
, since a node can be a descendant of itself according to the LCA definition.
二叉树的最低公共祖先:
第一种情况:两个结点在其公共祖先两侧
第二种情况:都在树的左侧
第三种情况:都在树的右侧
对应代码:
1. 遇到p就返回p。
2. 遇到q就返回q
3. 遇到left、right都不为空,返回root自己
4. left、right那个不为空就返回那个
class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (!root || root == p || root == q) return root; TreeNode* left = lowestCommonAncestor(root->left, p, q); TreeNode* right = lowestCommonAncestor(root->right, p, q); if (left && right) return root; return left ? left : right; } };
第二种方法迭代:
将二叉树分成从根结点到目标结点p、q的两条路径。求两条路径的最后一个公共结点。
class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (!root || !p || !q) return NULL; vector<TreeNode*> path, path1, path2; getPath(root, p, q, path, path1, path2); TreeNode* lca = NULL; int idx = 0; while (idx < path1.size() && idx < path2.size()) { if (path1[idx] != path2[idx]) break; else lca = path1[idx++]; } return lca; } void getPath(TreeNode* root, TreeNode* p, TreeNode* q, vector<TreeNode*>& path, vector<TreeNode*>& path1, vector<TreeNode*>& path2) { if (!root) return; path.push_back(root); if (root == p) path1 = path; if (root == q) path2 = path; if (!path1.empty() && !path2.empty()) return; getPath(root->left, p, q, path, path1, path2); getPath(root->right, p, q, path, path1, path2); path.pop_back(); } };