[LeetCode] Beautiful Arrangement
Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 <= i <= N) in this array:
- The number at the ith position is divisible by i.
- i is divisible by the number at the ith position.
Now given N, how many beautiful arrangements can you construct?
Example 1:
Input: 2 Output: 2 Explanation:
The first beautiful arrangement is [1, 2]:
Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).
Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).
The second beautiful arrangement is [2, 1]:
Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).
Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.
Note:
- N is a positive integer and will not exceed 15.
找出优美数列的个数,优美数列的定义是:元素本身可以被其在数组中的索引值+1整除,或者索引值+1可以被该元素本身整除,即是一个优美数列
给定一个数字N,该数组由1~N组成。要求判断该数组的全排列中有多少个优美数组。
暴力算法思路:
1、求解全排列。
2、对全排列中每个数组进行判断,并统计。
但是该思路的代码会超时。但是十分清晰。
class Solution { public: int countArrangement(int N) { int ans = 0; vector<vector<int>> res; vector<int> nums; for (int i = 1; i <= N; i++) nums.push_back(i); permute(res, nums, 0); for (int i = 0; i < res.size(); i++) { int cnt = 0; for (int j = 1; j <= N; j++) { if ((res[i][j - 1] % j == 0) || (j % res[i][j - 1] == 0)) cnt++; } if (cnt == N) ans++; } return ans; } void permute(vector<vector<int>>& res, vector<int>& nums, int idx) { if (idx >= nums.size()) { res.push_back(nums); return; } else { for (int i = idx; i < nums.size(); i++) { swap(nums[i], nums[idx]); permute(res, nums, idx + 1); swap(nums[idx], nums[i]); } } } }; // TLE
回溯法
class Solution { public: int countArrangement(int N) { vector<int> nums; for (int i = 1; i <= N; i++) nums.push_back(i); return helper(N, nums); } int helper(int n, vector<int>& nums) { if (n <= 0) return 1; int cnt = 0; for (int i = 0; i < n; i++) { if (n % nums[i] == 0 || nums[i] % n == 0) { swap(nums[i], nums[n - 1]); cnt += helper(n - 1, nums); swap(nums[i], nums[n - 1]); } } return cnt; } }; // 8 ms