750. Number Of Corner Rectangles四周是点的矩形个数
[抄题]:
Given a grid where each entry is only 0 or 1, find the number of corner rectangles.
A corner rectangle is 4 distinct 1s on the grid that form an axis-aligned rectangle. Note that only the corners need to have the value 1. Also, all four 1s used must be distinct.
Example 1:
Input: grid = [[1, 0, 0, 1, 0], [0, 0, 1, 0, 1], [0, 0, 0, 1, 0], [1, 0, 1, 0, 1]] Output: 1 Explanation: There is only one corner rectangle, with corners grid[1][2], grid[1][4], grid[3][2], grid[3][4].
Example 2:
Input: grid = [[1, 1, 1], [1, 1, 1], [1, 1, 1]] Output: 9 Explanation: There are four 2x2 rectangles, four 2x3 and 3x2 rectangles, and one 3x3 rectangle.
Example 3:
Input: grid = [[1, 1, 1, 1]] Output: 0 Explanation: Rectangles must have four distinct corners.
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
[奇葩corner case]:
[思维问题]:
已经中毒了,感觉什么都要用dp:能数学直接解决的话就不麻烦了
[英文数据结构或算法,为什么不用别的数据结构或算法]:
没有,就是直接在矩阵上数
[一句话思路]:
找矩形就是找两行+两列,拆开
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
每一对 i j 算一次,所以res += count*(count - 1) / 2应该在j更新的紧随其后
[总结]:
可以用数学就不用强行套用dp
[复杂度]:Time complexity: O(n^3) Space complexity: O(1)
[算法思想:递归/分治/贪心]:
[关键模板化代码]:
[其他解法]:
[Follow Up]:
[LC给出的题目变变变]:
[代码风格] :
class Solution { public int countCornerRectangles(int[][] grid) { //cc: null if (grid == null || grid.length == 0) return 0; int res = 0; int count = 0; //for loop: 2 rows, count = cols for (int i = 0; i < grid.length - 1; i++) { for (int j = i + 1; j < grid.length; j++) { count = 0; for (int k = 0; k < grid[0].length; k++) { if (grid[i][k] == 1 && grid[j][k] == 1) count++; } if (count > 1) res += count * (count - 1) / 2; } } return res; } }