236. Lowest Common Ancestor of a Binary Tree 二叉树的最低公共祖先
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [1,2], p = 1, q = 2 Output: 1
复习时还不会的地方:不知道dc的left right为什么要在函数里面inside定义。
因为这就是递归啊!这个节点也有属于它的子节点,需要一直循环下去
root和p q有什么关系啊?感觉是三个独立的点,不太懂
思路:反正就是不停地递归,所以root.left定义一次,root.right定义一次。典型的DC。
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
//cc
if (root == null || p == root || q == root)
return root;
//定义
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
//分开讨论
if (left != null && right != null) {
return root;
} else if (left == null) {
return right;
} else {
return left;
}
}
}