【题解】1st ucup Stage 20: India G - Perfect Strings

考虑卡特兰数 \(C_n = \sum_{i=0}^{n-1}C_iC_{n-1-i}\),故有递推式

\[C = xC^2 +1 \]

解出卡特兰数递推式:

\[C = \frac{1 - \sqrt{1 - 4x}}{2x} \]

考虑本题的递推式:

\[F_n = \sum_{i=0}^{n-1}\frac{c}{c-1}C_iF_{n-1-i} \]

\(B = c /(c - 1)\)故有

\[F = xBCF + 1 \\ F = \frac{1}{1-xBC}\\ F = \frac{1-\frac{B}{2}-\frac{B}{2}\sqrt{1-4x}}{(-B+1)+B^2x} \]

\(\sqrt{1-4x} = 1-2xC\)

\[F = \frac{1}{1-B} \cdot \frac{1 - B + xBC}{1-\frac{B^2}{B-1}x} \]

posted @ 2023-10-06 00:39  Imakf  阅读(80)  评论(0编辑  收藏  举报