【题解】 CF936E Iqea 平面图分治+点分树

考虑怎么求图上任意两点距离。

考虑分治,每次找一条竖着的线段,把区域划分成两半,计算所有点到切分线段的距离,于是穿过这条切分线的答案就可以被计算出来了。

那么求一个点到点集最短的距离,动态更新点集,怎么做?

不难发现,可以把分治的过程储存下来,具体来说,以点分树的形式储存。查询在点分树上查询即可。

code
// 珍爱生命,远离 unordered

#pragma GCC opimize("Ofast")
#include <bits/stdc++.h>

#define debug(...) fprintf(stderr ,__VA_ARGS__)
#define __FILE(x)\
	freopen(#x".in" ,"r" ,stdin);\
	freopen(#x".out" ,"w" ,stdout)
#define LL long long

const int MX = 3e5 + 23;
const LL MOD = 998244353;

typedef std::pair<int ,int> pi;

int read(){
	char k = getchar(); int x = 0;
	while(k < '0' || k > '9') k = getchar();
	while(k >= '0' && k <= '9') x = x * 10 + k - '0' ,k = getchar();
	return x;
}

pi QWQ[MX];
struct HA{
	size_t operator ()(const pi &t)const{
		return t.first * 300001ull + t.second; 
	}
};

class BIT{
	int bound;
	std::vector<int> data;
	public:
	void resize(int cap){
		bound = cap + 1;
		data = std::vector<int>(bound ,1e8);
	}
	void change(int x ,int v){
		while(x < bound){
			data[x] = std::min(data[x] ,v);
			x += x & -x;
		}
	}
	int getmin(int x){
		int ans = 1e8;
		while(x > 0){
			ans = std::min(ans ,data[x]);
			x -= x & -x;
		}
		return ans;
	}
}ds[MX][2];

const int dx[] = {0 ,0 ,1 ,-1};
const int dy[] = {1 ,-1 ,0 ,0};

std::unordered_map<pi ,int ,HA> buc;
int bel[MX];
std::vector<int> S[MX];
std::vector<int> to[MX];

int n ,q;
int head[MX] ,tot = 1;
struct edge{
	int node ,next;
}h[MX << 1];
void addedge(int u ,int v ,int flg = 1){
	h[++tot] = (edge){v ,head[u]} ,head[u] = tot;
	if(flg) addedge(v ,u ,false);
}

int vis[MX];
int cnt ,w[MX] ,miny[MX] ,maxy[MX];
void dfs(int x ,int y ,int f){
	if(f){
		addedge(cnt + 1 ,f);
		//debug("link %d %d\n" ,cnt + 1 ,f);
	}
	int uy = y ,dy = y;
	while(buc.find({x ,uy + 1}) != buc.end()) ++uy;
	while(buc.find({x ,dy - 1}) != buc.end()) --dy;

	int cur = ++cnt;
	for(int i = dy ; i <= uy ; ++i){
		S[cur].push_back(buc[{x ,i}]);
		bel[buc[{x ,i}]] = cur;
	}
	for(int i = dy ; i <= uy ; ++i){
		if(buc.find({x + 1 ,i}) != buc.end() && !bel[buc[{x + 1 ,i}]]) dfs(x + 1 ,i ,cur);
		if(buc.find({x - 1 ,i}) != buc.end() && !bel[buc[{x - 1 ,i}]]) dfs(x - 1 ,i ,cur);
	}
	miny[cur] = dy;
	maxy[cur] = uy;
	w[cur] = uy - dy + 1;
	debug("%d: %d~[%d ,%d]\n" ,cur ,x ,dy ,uy);
}

int size[MX] ,mxsz[MX] ,subsz ,G;
void GetG(int x ,int f){
	size[x] = w[x] ,mxsz[x] = 0;
	for(int i = head[x] ,d ; i ; i = h[i].next){
		if((d = h[i].node) == f || vis[d]) continue;
		GetG(d ,x) ,size[x] += size[d];
		mxsz[x] = std::max(mxsz[x] ,size[d]);
	}
	mxsz[x] = std::max(mxsz[x] ,subsz - size[x]);
	if(mxsz[x] < mxsz[G]) G = x;
}

int depth[MX];
int dis[20][MX] ,from[20][MX];

int cv[MX];
void doit(int R ,int dep){
	std::vector<int> visit;
	std::queue<int> Q;
	for(auto i : S[R]){
		dis[dep][i] = 0 ,from[dep][i] = QWQ[i].second - miny[R] + 1;
		cv[i] = 1;
		visit.push_back(i);
		Q.push(i);
	}
	while(!Q.empty()){;
		int x = Q.front(); Q.pop();
		for(auto i : to[x]){
			if(!vis[bel[i]] && !cv[i]){
				cv[i] = 1;
				from[dep][i] = from[dep][x];
				dis[dep][i] = dis[dep][x] + 1;
				visit.push_back(i);
				Q.push(i);
			}
		}
	}
	for(auto i : visit) cv[i] = false;
	ds[R][0].resize(w[R]);
	ds[R][1].resize(w[R]);
}

int ff[MX];
void solve(int x ,int dep){
	depth[x] = dep;
	debug("> %d\n" ,x);
	vis[x] = true; doit(x ,dep);
	for(int i = head[x] ,d ; i ; i = h[i].next){
		if(vis[d = h[i].node]) continue;
		mxsz[G = 0] = subsz = size[d];
		GetG(d ,x) ,ff[G] = x;
		solve(G ,dep + 1);
	}
}

void change(int x ,int y){
	int dep = depth[bel[buc[{x ,y}]]];
	for(int u = bel[buc[{x ,y}]] ; u ; u = ff[u] ,--dep){
		int id = buc[{x ,y}];
		int inter = from[dep][id] ,rinter = w[u] - inter + 1;
		int length = dis[dep][id];
		ds[u][0].change(inter ,length - inter);
		ds[u][1].change(rinter ,length - rinter);
	}
}

int query(int x ,int y){
	int ans = 1e8 ,dep = depth[bel[buc[{x ,y}]]];
	for(int u = bel[buc[{x ,y}]] ; u ; u = ff[u] ,--dep){
		int id = buc[{x ,y}];
		int inter = from[dep][id] ,rinter = w[u] - inter + 1;
		int length = dis[dep][id];
		ans = std::min(ans ,length + inter + ds[u][0].getmin(inter));
		ans = std::min(ans ,length + rinter + ds[u][1].getmin(rinter));
	}
	return ans > n ? -1 : ans;
}

void buildtree(){
	for(auto o : buc){
		int x = o.first.first ,y = o.first.second;
		for(int i = 0 ,tx ,ty ; i < 4 ; ++i){
			tx = x + dx[i] ,ty = y + dy[i];
			if(buc.find({tx ,ty}) != buc.end()){
				to[o.second].push_back(buc[{tx ,ty}]);
			}
		}
	}
	auto i = buc.begin();
	dfs(i->first.first ,i->first.second ,0);
	mxsz[G = 0] = subsz = n;
	GetG(1 ,0) ,solve(G ,0);
}

int main(){
	n = read();
	for(int i = 1 ,x ,y ; i <= n ; ++i){
		x = read() ,y = read();
		QWQ[i] = {x ,y};
		buc[{x ,y}] = i;
	}
	buildtree();
	q = read();
	for(int i = 1 ,op ,x ,y ; i <= q ; ++i){
		op = read() ,x = read() ,y = read();
		if(op == 1) change(x ,y);
		else printf("%d\n" ,query(x ,y));
	}
	return 0;
}

posted @ 2021-07-15 16:23  Imakf  阅读(136)  评论(0编辑  收藏  举报