iltonmi's docs

FutureTask源码分析(JDK7)

总览

    A cancellable asynchronous computation.  
    This class provides a base implementation of {@link Future}, with methods to start and cancel a computation, query to see if the computation is complete, and retrieve the result of the computation.  
    The result can only be retrieved when the computation has completed; the {@code get} methods will block if the computation has not yet completed.  
    Once the computation has completed, the computation cannot be restarted or cancelled (unless the computation is invoked using {@link #runAndReset}).

FututeTask 是可取消的异步任务。这个类提供了 Future 的基本实现,通过这些实现的方法能够开始或取消任务、查询任务是否完成、获取任务结果。仅当任务完成时才能获取任务的结果;当任务未完成时, get() 会阻塞。一旦任务完成,任务不能被重启或取消(除非任务由 runAndReset() 来启动)。

//@param <V> 是 get() 返回结果的类型
public class FutureTask<V> implements RunnableFuture<V>

和JDK7以前的版本的不同之处

/*
  * Revision notes: This differs from previous versions of this 
  * class that relied on AbstractQueuedSynchronizer, mainly to 
  * avoid surprising users about retaining interrupt status during 
  * cancellation races. 
  * Sync control in the current design relies 
  * on a "state" field updated via CAS to track completion, along 
  * with a simple Treiber stack to hold waiting threads. 
  */

和之前依赖AQS的版本不同的主要原因是,之前的版本在并发的情况下取消任务,可能会导致任务处于 interrupt 的状态。

当前设计的同步控制依赖于通过CAS更新的 state 成员变量以及一个容纳等待线程的 Treiber stack 来追踪任务的完成情况。

成员变量

/**
 * The run state of this task, initially NEW.  The run state
 * transitions to a terminal state only in methods set,
 * setException, and cancel.  During comp letion, state may take on
 * transient values of COMPLETING (while outcome is being set) or
 * INTERRUPTING (only while interrupting the runner to satisfy a
 * cancel(true)). Transitions from these intermediate to final
 * states use cheaper ordered/lazy writes because values are unique
 * and cannot be further modified.
 * 此任务的运行状态,初始值是NEW。
 * 运行状态转换只可能在set(), setException()和cancel()方法中发生。
 * 任务正在完成时,状态可能处于 COMPLETING(正在设置outcome成员变量) 或 INTERRUPTING(当通过 
 * cancel(ture)中断运行线程时) 这2个中间状态(瞬时值)。
 * 
 * 可能发生的状态转换:
 * NEW -> COMPLETING -> NORMAL
 * NEW -> COMPLETING -> EXCEPTIONAL
 * NEW -> CANCELLED
 * NEW -> INTERRUPTING -> INTERRUPTED
 */
private volatile int state;
private static final int NEW          = 0;
private static final int COMPLETING   = 1;
private static final int NORMAL       = 2;
private static final int EXCEPTIONAL  = 3;
private static final int CANCELLED    = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED  = 6;

/** The underlying callable; nulled out after run */
//运行后将变为null
private Callable<V> callable;
/** The result to return or exception to throw from get() */
//get()返回的结果或抛出的异常
//非volatile,受state的读或写保护
private Object outcome; // non-volatile, protected by state reads/writes
/** The thread running the callable; CASed during run() */
//运行当前callable的线程
private volatile Thread runner;
/** Treiber stack of waiting threads */
//容纳等待线程的栈
private volatile WaitNode waiters;

构造函数

 /**
 * Creates a {@code FutureTask} that will, upon running, execute the
 * given {@code Callable}.
 * 创建一个在运行时会执行指定callable的FutureTask
 *
 * @param  callable the callable task
 * @throws NullPointerException if the callable is null
 */
public FutureTask(Callable<V> callable) {
    if (callable == null)
        throw new NullPointerException();
    this.callable = callable;
    this.state = NEW;       // ensure visibility of callable
}

/**
 * Creates a {@code FutureTask} that will, upon running, execute the
 * given {@code Runnable}, and arrange that {@code get} will return the
 * given result on successful completion.
 * 创建一个在运行时执行指定Runnable的,能够令get()在成功完成时返回结果的FutureTask
 *
 * @param runnable the runnable task
 * @param result the result to return on successful completion. If
 * you don't need a particular result, consider using
 * constructions of the form:
 * {@code Future<?> f = new FutureTask<Void>(runnable, null)}
 * @throws NullPointerException if the runnable is null
 */
public FutureTask(Runnable runnable, V result) {
    this.callable = Executors.callable(runnable, result);
    this.state = NEW;       // ensure visibility of callable
}

成员方法



public boolean isCancelled() {
    return state >= CANCELLED;
}

public boolean isDone() {
    return state != NEW;
}

/**
 * Returns result or throws exception for completed task.
 * 为完成的任务返回结果或抛出异常
 * 
 * @param s completed state value
 */
@SuppressWarnings("unchecked")
private V report(int s) throws ExecutionException {
    Object x = outcome;
    if (s == NORMAL)
        return (V)x;
    if (s >= CANCELLED)
        throw new CancellationException();
    throw new ExecutionException((Throwable)x);
}

public boolean cancel(boolean mayInterruptIfRunning) {
    //只有在NEW状态的任务才可以被取消
    if (!(state == NEW && STATE.compareAndSet
          (this, NEW, mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
        return false;
    try {    // in case call to interrupt throws exception
        if (mayInterruptIfRunning) {
            try {
                Thread t = runner;
                if (t != null)
                    //设置中断
                    t.interrupt();
            } finally { // final state
                //设置为最终状态:被中断
                STATE.setRelease(this, INTERRUPTED);
            }
        }
    } finally {
        finishCompletion();
    }
    return true;
}

/**
 * @throws CancellationException {@inheritDoc}
 */
public V get() throws InterruptedException, ExecutionException {
    int s = state;
    if (s <= COMPLETING)
        s = awaitDone(false, 0L);
    return report(s);
}

/**
 * @throws CancellationException {@inheritDoc}
 */
public V get(long timeout, TimeUnit unit)
    throws InterruptedException, ExecutionException, TimeoutException {
    if (unit == null)
        throw new NullPointerException();
    int s = state;
    //若任务未完成,等待任务完成
    if (s <= COMPLETING &&
        (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
        throw new TimeoutException();
    return report(s);
}

/**
 * Protected method invoked when this task transitions to state
 * {@code isDone} (whether normally or via cancellation). The
 * default implementation does nothing.  Subclasses may override
 * this method to invoke completion callbacks or perform
 * bookkeeping. Note that you can query status inside the
 * implementation of this method to determine whether this task
 * has been cancelled.
 * 
 * 受保护方法。
 * 子类可以重写这个方法来进行任务回调或者记录状态。
 * 你可以通过在方法的实现中查询任务的状态来判断任务是否被取消。
 */
protected void done() { }

/**
 * Sets the result of this future to the given value unless
 * this future has already been set or has been cancelled.
 * 将任务的结果设置为给定值,除非这个任务以及被设置或被取消。
 *
 * <p>This method is invoked internally by the {@link #run} method
 * upon successful completion of the computation.
 *
 * @param v the value
 */
protected void set(V v) {
    if (STATE.compareAndSet(this, NEW, COMPLETING)) {
        outcome = v;
        //设置最终状态:正常完成
        STATE.setRelease(this, NORMAL); // final state
        finishCompletion();
    }
}

/**
 * Causes this future to report an {@link ExecutionException}
 * with the given throwable as its cause, unless this future has
 * already been set or has been cancelled.
 * 导致任务将报告一个以值得throwable为原因的 ExecutionException,
 * 除非任务已经被设置结果或被取消。
 * 
 * <p>This method is invoked internally by the {@link #run} method
 * upon failure of the computation.
 * 这个是一个内部使用的方法,只在任务失败时由run()调用。
 *
 * @param t the cause of failure
 */
protected void setException(Throwable t) {
    if (STATE.compareAndSet(this, NEW, COMPLETING)) {
        outcome = t;
        STATE.setRelease(this, EXCEPTIONAL); // final state
        finishCompletion();
    }
}

public void run() {
    //以下2种情况直接返回:
    //1.状态不为NEW
    //2.CAS设置当前线程为任务运行线程失败
    if (state != NEW ||
        !RUNNER.compareAndSet(this, null, Thread.currentThread()))
        return;
    try {
        Callable<V> c = callable;
        if (c != null && state == NEW) {
            V result;
            boolean ran;
            try {
                result = c.call();
                ran = true;
            } catch (Throwable ex) {
                result = null;
                ran = false;
                setException(ex);
            }
            if (ran)
                //这个方法会调用finishCompletion()改变任务状态
                set(result);
        }
    } finally {
        // runner must be non-null until state is settled to
        // prevent concurrent calls to run()
        runner = null;
        // state must be re-read after nulling runner to prevent
        // leaked interrupts
        // 防止cacel(true)的线程挂起导致中断不完全,
        // 从而处于Interrupting的中间状态。
        // 保证 interrupting 这出现在run和runAndSet方法中
        int s = state;
        if (s >= INTERRUPTING)
            handlePossibleCancellationInterrupt(s);
    }
}

/**
 * Executes the computation without setting its result, and then
 * resets this future to initial state, failing to do so if the
 * computation encounters an exception or is cancelled.  This is
 * designed for use with tasks that intrinsically execute more
 * than once.
 * 在不设置结果的前提下运行任务,然后将future设置成初始状态?
 * 当任务遇到异常或被取消,将会运行失败。
 * 
 * 此方法设计目的:服务那些本就需要执行多次的任务。
 * 在ScheduleThreadPoolExecutor中用到,因为里面的任务都是定时或周期执行的,需要被执行多次。
 * 
 * @return {@code true} if successfully run and reset
 */
protected boolean runAndReset() {
    //仅仅指出和run()的不同之处
    if (state != NEW ||
        !RUNNER.compareAndSet(this, null, Thread.currentThread()))
        return false;
    boolean ran = false;
    int s = state;
    try {
        Callable<V> c = callable;
        if (c != null && s == NEW) {
            try {
                c.call(); // don't set result 这里没有接收结果
                ran = true;
            } catch (Throwable ex) {
                setException(ex);
            }
            //这里没有调用set(),因此不会调用finishCompletion()改变任务状态
        }
    } finally {
        // runner must be non-null until state is settled to
        // prevent concurrent calls to run()
        runner = null;
        // state must be re-read after nulling runner to prevent
        // leaked interrupts
        s = state;
        if (s >= INTERRUPTING)
            handlePossibleCancellationInterrupt(s);
    }
    return ran && s == NEW;
}

/**
 * Ensures that any interrupt from a possible cancel(true) is only
 * delivered to a task while in run or runAndReset.
 * 保证 interrupting 这出现在run和runAndSet方法中。
 */
private void handlePossibleCancellationInterrupt(int s) {
    // It is possible for our interrupter to stall before getting a
    // chance to interrupt us.  Let's spin-wait patiently.
    // 若任务处于INTERRUPTING状态,自旋等待任务被完全中断,
    // 即等待转换到INTERRUPTED状态
    if (s == INTERRUPTING)
        while (state == INTERRUPTING)
            Thread.yield(); // wait out pending interrupt

    // assert state == INTERRUPTED;
	// 到这里 state必然等于INTERRUPTED
    
    // We want to clear any interrupt we may have received from
    // cancel(true).  However, it is permissible to use interrupts
    // as an independent mechanism for a task to communicate with
    // its caller, and there is no way to clear only the
    // cancellation interrupt.
    //
    // Thread.interrupted();
}

/**
 * Simple linked list nodes to record waiting threads in a Treiber
 * stack.  See other classes such as Phaser and SynchronousQueue
 * for more detailed explanation.
 * 普通节点,作为栈节点记录栈中的等待线程
 */
static final class WaitNode {
    volatile Thread thread;
    volatile WaitNode next;
    WaitNode() { thread = Thread.currentThread(); }
}

/**
 * Removes and signals all waiting threads, invokes done(), and
 * nulls out callable.
 * 移除和通知所有等待的线程,调用done(),并移除callable。
 */
private void finishCompletion() {
    // assert state > COMPLETING;
    // 此时 state > COMPLETING;
    
    //若等待线程栈非空
    for (WaitNode q; (q = waiters) != null;) {
        //CAS设置等待线程为null
        if (WAITERS.weakCompareAndSet(this, q, null)) {
            //迭代栈,唤醒所有非空线程
            for (;;) {
                Thread t = q.thread;
                if (t != null) {
                    q.thread = null;
                    //唤醒
                    LockSupport.unpark(t);
                }
                WaitNode next = q.next;
                if (next == null)
                    break;
                q.next = null; // unlink to help gc
                q = next;
            }
            break;
        }
    }

    done();

    callable = null;        // to reduce footprint
}

/**
 * Awaits completion or aborts on interrupt or timeout.
 * 等待任务完成或在中断和超时的情况下放弃任务
 * 
 * @param timed true if use timed waits
 * 			当需要超时等待的功能时为真
 * @param nanos time to wait, if timed
 * @return state upon completion or at timeout
 * 			返回任务完成或任务超时的状态
 */
private int awaitDone(boolean timed, long nanos)
    throws InterruptedException {
    // The code below is very delicate, to achieve these goals:
    // - call nanoTime exactly once for each call to park
    // - if nanos <= 0L, return promptly without allocation or nanoTime
    // - if nanos == Long.MIN_VALUE, don't underflow
    // - if nanos == Long.MAX_VALUE, and nanoTime is non-monotonic
    //   and we suffer a spurious wakeup, we will do no worse than
    //   to park-spin for a while
    long startTime = 0L;    // Special value 0L means not yet parked
    WaitNode q = null;
    //记录当前线程是否入栈排队
    boolean queued = false;
    for (;;) {
        int s = state;
        if (s > COMPLETING) {
            if (q != null)
                q.thread = null;
            return s;
        }
        else if (s == COMPLETING)
            // We may have already promised (via isDone) that we are done
            // so never return empty-handed or throw InterruptedException
            Thread.yield();
        else if (Thread.interrupted()) {
            //若当前线程被中断,移出栈,抛出异常
            removeWaiter(q);
            throw new InterruptedException();
        }
        else if (q == null) {
            if (timed && nanos <= 0L)
                return s;
            //创建栈节点
            q = new WaitNode();
        }
        else if (!queued)
            //节点CAS尝试入栈,若成功则此节点成为waiters
            queued = WAITERS.weakCompareAndSet(this, q.next = waiters, q);
        else if (timed) {
            //若需要超时等待的功能
            final long parkNanos;
            if (startTime == 0L) { // first time
                //首次判断,记录开始时间
                startTime = System.nanoTime();
                if (startTime == 0L)
                    startTime = 1L;
                parkNanos = nanos;
            } else {
                long elapsed = System.nanoTime() - startTime;
                if (elapsed >= nanos) {
                    //若超时则返回
                    removeWaiter(q);
                    return state;
                }
                //计算剩余等待时间
                parkNanos = nanos - elapsed;
            }
            // nanoTime may be slow; recheck before parking
            if (state < COMPLETING)
                //快速判断任务是否正在完成
                LockSupport.parkNanos(this, parkNanos);
        }
        else
            //若不需要超时等待的功能,直接阻塞
            LockSupport.park(this);
    }
}

/**
 * Tries to unlink a timed-out or interrupted wait node to avoid
 * accumulating garbage.  Internal nodes are simply unspliced
 * without CAS since it is harmless if they are traversed anyway
 * by releasers.  To avoid effects of unsplicing from already
 * removed nodes, the list is retraversed in case of an apparent
 * race.  This is slow when there are a lot of nodes, but we don't
 * expect lists to be long enough to outweigh higher-overhead
 * schemes.
 * 尝试移除超时或被中断的节点。
 * 在明显竞争时将会重新遍历列表,目的是为了避免移除一个已经移除的节点。
 */
private void removeWaiter(WaitNode node) {
    if (node != null) {
        //令当前节点的线程为null
        node.thread = null;
        retry:
        for (;;) {          // restart on removeWaiter race
            for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
                s = q.next;
                if (q.thread != null)
                    pred = q;
                else if (pred != null) {
                    //若当前线程为空,但存在前继非空节点,则移除当前节点
                    pred.next = s;
                    //若前继节点无效,则重新遍历
                    if (pred.thread == null) // check for race
                        continue retry;
                }
                else if (!WAITERS.compareAndSet(this, q, s))
                    //移除栈顶节点失败
                    continue retry;
            }
            break;
        }
    }
}

/**
 * Returns a string representation of this FutureTask.
 *
 * @implSpec
 * The default implementation returns a string identifying this
 * FutureTask, as well as its completion state.  The state, in
 * brackets, contains one of the strings {@code "Completed Normally"},
 * {@code "Completed Exceptionally"}, {@code "Cancelled"}, or {@code
 * "Not completed"}.
 *
 * @return a string representation of this FutureTask
 */
public String toString() {
    final String status;
    switch (state) {
    case NORMAL:
        status = "[Completed normally]";
        break;
    case EXCEPTIONAL:
        status = "[Completed exceptionally: " + outcome + "]";
        break;
    case CANCELLED:
    case INTERRUPTING:
    case INTERRUPTED:
        status = "[Cancelled]";
        break;
    default:
        final Callable<?> callable = this.callable;
        status = (callable == null)
            ? "[Not completed]"
            : "[Not completed, task = " + callable + "]";
    }
    return super.toString() + status;
}

// VarHandle mechanics
private static final VarHandle STATE;
private static final VarHandle RUNNER;
private static final VarHandle WAITERS;
static {
    try {
        MethodHandles.Lookup l = MethodHandles.lookup();
        STATE = l.findVarHandle(FutureTask.class, "state", int.class);
        RUNNER = l.findVarHandle(FutureTask.class, "runner", Thread.class);
        WAITERS = l.findVarHandle(FutureTask.class, "waiters", WaitNode.class);
    } catch (ReflectiveOperationException e) {
        throw new ExceptionInInitializerError(e);
    }

    // Reduce the risk of rare disastrous classloading in first call to
    // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
    Class<?> ensureLoaded = LockSupport.class;
}

posted on 2021-01-26 01:17  iltonmi  阅读(23)  评论(0编辑  收藏  举报

导航