scala中json与对象的转换

  • 遇到的问题

因为要把spark从es读出来的json数据转换为对象,开始想用case class定义类型,通过fastjson做转换。如下

复制代码
case class Book (author: String, content: String, id: String, time: Long, title: String)

  val json = "{\"author\":\"hll\",\"content\":\"ES即etamsports\",\"id\":\"693\",\"time\":1490165237200,\"title\":\"百度百科\"}"
  val mapper: ObjectMapper = new ObjectMapper()
  val book: Book = mapper.readValue(json, classOf[Book])
复制代码

结果抛出了异常:com.fasterxml.jackson.databind.JsonMappingException: No suitable constructor found for type [simple type, class JsonTest$Book]

换成fastjson也会有相似的异常。

恍然大悟,case class没有空参构造函数,跟fastjson这些库不太兼容。

  • 解决办法

然而又不想就java class,然后就找到了json4s-jackson,可以完美兼容scala的case class。

pom依赖:

<dependency>
    <groupId>org.json4s</groupId>
    <artifactId>json4s-jackson_2.10</artifactId>
    <version>3.2.10</version>
</dependency>

 

  

使用的样例代码:

复制代码
//隐式转换必须要导入
import org.json4s._ import org.json4s.jackson.JsonMethods._ class Book(val author: String,val content: String,val id: String, val time: Long, val title: String) object JsonTest { def main(args: Array[String]) { val json = "{\"author\":\"hll\",\"content\":\"ES即etamsports\",\"id\":\"693\",\"time\":1490165237200,\"title\":\"百度百科\"}"
    //导入隐式值 implicit val formats = DefaultFormats val book: Book = parse(json).extract[Book] println(book.content) } }
复制代码
  •  实际使用与思考

spark程序中的应用:

1
2
implicit val formats = DefaultFormats
esRDD.map(_._2).map(parse(_).extract[Book]).sortBy(_.time, false).take(10).foreach(println)

spark里面解析json数据有一个经典的问题,ObjectMapper对象的创建很重。一般使用mapPartition来对一个分区复用ObjectMapper对象。

我们来看一下parse方法的源码:

 

private[this] lazy val _defaultMapper = {
   val m = new ObjectMapper()
   m.registerModule(new Json4sScalaModule)
   m
 }
 def mapper = _defaultMapper
 
 def parse(in: JsonInput, useBigDecimalForDouble: Boolean = false): JValue = {
   mapper.configure(DeserializationFeature.USE_BIG_DECIMAL_FOR_FLOATS, useBigDecimalForDouble)
   in match {
       case StringInput(s) => mapper.readValue(s, classOf[JValue])
       case ReaderInput(rdr) => mapper.readValue(rdr, classOf[JValue])
       case StreamInput(stream) => mapper.readValue(stream, classOf[JValue])
       case FileInput(file) => mapper.readValue(file, classOf[JValue])
     }
 }

 

  实际使用的ObjectMapper对象是lazy初始化的而且是复用的,避免了ObjectMapper对象的重复创建,很nice。

posted on 2017-05-16 22:20  ilinux_one  阅读(15835)  评论(0编辑  收藏  举报

导航