emp表数据结构
hbase(main):098:0> scan 'emp' ROW COLUMN+CELL row1 column=mycf:depart, timestamp=1555846776542, value=research row1 column=mycf:id, timestamp=1555846776590, value=7876 row1 column=mycf:job, timestamp=1555846776566, value=clerk row1 column=mycf:locate, timestamp=1555846776618, value=dallas row1 column=mycf:name, timestamp=1555846776511, value=adams row2 column=mycf:depart, timestamp=1555846776687, value=sales row2 column=mycf:id, timestamp=1555846776736, value=7499 row2 column=mycf:job, timestamp=1555846776712, value=salesman row2 column=mycf:locate, timestamp=1555846776770, value=chicago row2 column=mycf:name, timestamp=1555846776662, value=allen row3 column=mycf:depart, timestamp=1555846776838, value=sales row3 column=mycf:id, timestamp=1555846776887, value=7698 row3 column=mycf:job, timestamp=1555846776863, value=manager row3 column=mycf:locate, timestamp=1555846776912, value=chicago row3 column=mycf:name, timestamp=1555846776806, value=blake row4 column=mycf:depart, timestamp=1555846776976, value=accounting row4 column=mycf:id, timestamp=1555846777027, value=7782 row4 column=mycf:job, timestamp=1555846777002, value=manager row4 column=mycf:locate, timestamp=1555846777086, value=new york row4 column=mycf:name, timestamp=1555846776952, value=clark row5 column=mycf:depart, timestamp=1555846777146, value=research row5 column=mycf:id, timestamp=1555846777193, value=7902 row5 column=mycf:job, timestamp=1555846777169, value=analyst row5 column=mycf:locate, timestamp=1555846777218, value=dallas row5 column=mycf:name, timestamp=1555846777121, value=ford row6 column=mycf:depart, timestamp=1555846777277, value=sales row6 column=mycf:id, timestamp=1555846777324, value=7900 row6 column=mycf:job, timestamp=1555846777301, value=clerk row6 column=mycf:locate, timestamp=1555846777355, value=chicago row6 column=mycf:name, timestamp=1555846777253, value=james row7 column=mycf:depart, timestamp=1555846777416, value=research row7 column=mycf:id, timestamp=1555846777465, value=7566 row7 column=mycf:job, timestamp=1555846777441, value=manager row7 column=mycf:locate, timestamp=1555846777491, value=dallas row7 column=mycf:name, timestamp=1555846777390, value=jones row8 column=mycf:depart, timestamp=1555846777556, value=accounting row8 column=mycf:id, timestamp=1555846777604, value=7839 row8 column=mycf:job, timestamp=1555846777581, value=president row8 column=mycf:locate, timestamp=1555846777628, value=new york row8 column=mycf:name, timestamp=1555846777526, value=king 8 row(s) in 0.0490 seconds
工具
org.apache.hadoop.hbase.io.hfile.HFile
# hbase org.apache.hadoop.hbase.io.hfile.HFile usage: HFile [-a] [-b] [-e] [-f <arg>] [-k] [-m] [-p] [-r <arg>] [-s] [-v] -a,--checkfamily Enable family check -b,--printblocks Print block index meta data -e,--printkey Print keys -f,--file <arg> File to scan. Pass full-path; e.g. hdfs://a:9000/hbase/.META./12/34 -k,--checkrow Enable row order check; looks for out-of-order keys -m,--printmeta Print meta data of file -p,--printkv Print key/value pairs -r,--region <arg> Region to scan. Pass region name; e.g. '.META.,,1' -s,--stats Print statistics -v,--verbose Verbose output; emits file and meta data delimiters
或者
# hbase hfile usage: HFile [-a] [-b] [-e] [-f <arg>] [-k] [-m] [-p] [-r <arg>] [-s] [-v] -a,--checkfamily Enable family check -b,--printblocks Print block index meta data -e,--printkey Print keys -f,--file <arg> File to scan. Pass full-path; e.g. hdfs://a:9000/hbase/.META./12/34 -k,--checkrow Enable row order check; looks for out-of-order keys -m,--printmeta Print meta data of file -p,--printkv Print key/value pairs -r,--region <arg> Region to scan. Pass region name; e.g. '.META.,,1' -s,--stats Print statistics -v,--verbose Verbose output; emits file and meta data delimiters
# hbase org.apache.hadoop.hbase.io.hfile.HFile -f /hbase/emp/2dddf0f7140e120718b6d4356dfcee85/mycf/cab01eb30627452e8e38defad2144996 -e -p -m -s 19/05/10 21:39:27 INFO hfile.CacheConfig: Allocating LruBlockCache with maximum size 511.0m K: row1/mycf:depart/1555846776542/Put/vlen=8 V: research K: row1/mycf:id/1555846776590/Put/vlen=4 V: 7876 K: row1/mycf:job/1555846776566/Put/vlen=5 V: clerk K: row1/mycf:locate/1555846776618/Put/vlen=6 V: dallas K: row1/mycf:name/1555846776511/Put/vlen=5 V: adams K: row2/mycf:depart/1555846776687/Put/vlen=5 V: sales K: row2/mycf:id/1555846776736/Put/vlen=4 V: 7499 K: row2/mycf:job/1555846776712/Put/vlen=8 V: salesman K: row2/mycf:locate/1555846776770/Put/vlen=7 V: chicago K: row2/mycf:name/1555846776662/Put/vlen=5 V: allen K: row3/mycf:depart/1555846776838/Put/vlen=5 V: sales K: row3/mycf:id/1555846776887/Put/vlen=4 V: 7698 K: row3/mycf:job/1555846776863/Put/vlen=7 V: manager K: row3/mycf:locate/1555846776912/Put/vlen=7 V: chicago K: row3/mycf:name/1555846776806/Put/vlen=5 V: blake K: row4/mycf:depart/1555846776976/Put/vlen=10 V: accounting K: row4/mycf:id/1555846777027/Put/vlen=4 V: 7782 K: row4/mycf:job/1555846777002/Put/vlen=7 V: manager K: row4/mycf:locate/1555846777086/Put/vlen=8 V: new york K: row4/mycf:name/1555846776952/Put/vlen=5 V: clark K: row5/mycf:depart/1555846777146/Put/vlen=8 V: research K: row5/mycf:id/1555846777193/Put/vlen=4 V: 7902 K: row5/mycf:job/1555846777169/Put/vlen=7 V: analyst K: row5/mycf:locate/1555846777218/Put/vlen=6 V: dallas K: row5/mycf:name/1555846777121/Put/vlen=4 V: ford K: row6/mycf:depart/1555846777277/Put/vlen=5 V: sales K: row6/mycf:id/1555846777324/Put/vlen=4 V: 7900 K: row6/mycf:job/1555846777301/Put/vlen=5 V: clerk K: row6/mycf:locate/1555846777355/Put/vlen=7 V: chicago K: row6/mycf:name/1555846777253/Put/vlen=5 V: james K: row7/mycf:depart/1555846777416/Put/vlen=8 V: research K: row7/mycf:id/1555846777465/Put/vlen=4 V: 7566 K: row7/mycf:job/1555846777441/Put/vlen=7 V: manager K: row7/mycf:locate/1555846777491/Put/vlen=6 V: dallas K: row7/mycf:name/1555846777390/Put/vlen=5 V: jones K: row8/mycf:depart/1555846777556/Put/vlen=10 V: accounting K: row8/mycf:id/1555846777604/Put/vlen=4 V: 7839 K: row8/mycf:job/1555846777581/Put/vlen=9 V: president K: row8/mycf:locate/1555846777628/Put/vlen=8 V: new york K: row8/mycf:name/1555846777526/Put/vlen=4 V: king Block index size as per heapsize: 416 reader=/hbase/emp/2dddf0f7140e120718b6d4356dfcee85/mycf/cab01eb30627452e8e38defad2144996, compression=none, cacheConf=CacheConfig:enabled [cacheDataOnRead=true] [cacheDataOnWrite=false] [cacheIndexesOnWrite=false] [cacheBloomsOnWrite=false] [cacheEvictOnClose=false] [cacheCompressed=false], firstKey=row1/mycf:depart/1555846776542/Put, lastKey=row8/mycf:name/1555846777526/Put, avgKeyLen=24, avgValueLen=5, entries=40, length=2155 Trailer: fileinfoOffset=1678, loadOnOpenDataOffset=1591, dataIndexCount=1, metaIndexCount=0, totalUncomressedBytes=2092, entryCount=40, compressionCodec=NONE, uncompressedDataIndexSize=39, numDataIndexLevels=1, firstDataBlockOffset=0, lastDataBlockOffset=0, comparatorClassName=org.apache.hadoop.hbase.KeyValue$KeyComparator, version=2 Fileinfo: KEY_VALUE_VERSION = \x00\x00\x00\x01 MAJOR_COMPACTION_KEY = \x00 MAX_MEMSTORE_TS_KEY = \x00\x00\x00\x00\x00\x00\x00\x00 MAX_SEQ_ID_KEY = 7099 TIMERANGE = 1555846776511....1555846777628 hfile.AVG_KEY_LEN = 24 hfile.AVG_VALUE_LEN = 5 hfile.LASTKEY = \x00\x04row8\x04mycfname\x00\x00\x01j?\xB1\xCA\xB6\x04 Mid-key: \x00\x04row1\x04mycfdepart\x00\x00\x01j?\xB1\xC6\xDE\x04 Bloom filter: Not present Stats: Key length: count: 40 min: 22 max: 26 mean: 24.2 Val length: count: 40 min: 4 max: 10 mean: 5.975 Row size (bytes): count: 8 min: 187 max: 196 mean: 190.875 Row size (columns): count: 8 min: 5 max: 5 mean: 5.0 Key of biggest row: row8 Scanned kv count -> 40
===================来自一泽涟漪的博客,转载请标明出处 www.cnblogs.com/ilifeilong===================