渚漪力扣D1
3. 无重复字符的最长子串
难度中等4245收藏分享切换为英文关注反馈
给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。
示例 1:
输入: "abcabcbb"
输出: 3
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。
示例 2:
输入: "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。
示例 3:
输入: "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。
滑动窗口
思路和算法
我们先用一个例子来想一想如何在较优的时间复杂度内通过本题。
我们不妨以示例一中的字符串 abcabcbb 为例,找出 从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:
发现了什么?如果我们依次递增地枚举子串的起始位置,那么子串的结束位置也是递增的!这里的原因在于,假设我们选择字符串中的第 kk 个字符作为起始位置,并且得到了不包含重复字符的最长子串的结束位置为 rk。那么当我们选择第 k+1个字符作为起始位置时,首先从 k+1 到 rk的字符显然是不重复的,并且由于少了原本的第 kk 个字符,我们可以尝试继续增大 rk,直到右侧出现了重复字符为止。
-
这样以来,我们就可以使用「滑动窗口」来解决这个问题了:
-
我们使用两个指针表示字符串中的某个子串(的左右边界)。其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的 rk ;
-
在每一步的操作中,我们会将左指针向右移动一格,表示我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;
-
在枚举结束后,我们找到的最长的子串的长度即为答案。
判断重复字符
在上面的流程中,我们还需要使用一种数据结构来判断 是否有重复的字符,常用的数据结构为哈希集合(即 C++ 中的 std::unordered_set,Java 中的 HashSet,Python 中的 set, JavaScript 中的 Set)。在左指针向右移动的时候,我们从哈希集合中移除一个字符,在右指针向右移动的时候,我们往哈希集合中添加一个字符。
至此,我们就完美解决了本题。
class Solution {
public:
int lengthOfLongestSubstring(string s) {
// 哈希集合,记录每个字符是否出现过
unordered_set<char> occ;
int n = s.size();
// 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动
int rk = -1, ans = 0;
// 枚举左指针的位置,初始值隐性地表示为 -1
for (int i = 0; i < n; ++i) {
if (i != 0) {
// 左指针向右移动一格,移除一个字符
occ.erase(s[i - 1]);
}
while (rk + 1 < n && !occ.count(s[rk + 1])) {
// 不断地移动右指针
occ.insert(s[rk + 1]);
++rk;
}
// 第 i 到 rk 个字符是一个极长的无重复字符子串
ans = max(ans, rk - i + 1);
}
return ans;
}
};
拙劣代码 ↓
int lengthOfLongestSubstring(char * s) {
int i, j, k = 0, l = 0,cf;
char s1[100000] = { 0 };
int zc[100000] = { 0 };
for (i = 0; s[i] != '\0'; i++) {
cf = 0;
for (j = 0; j < k; j++) {
if (s1[j] == s[i]) {
cf = 1;
break;
}
}
if (j == k) {
s1[k] = s[i];
k++;
}
if (cf == 1) {
zc[l] = k;
i = l;
l++;
k = 0;
continue;
}
}
zc[l] = k;
int max=0;
for (i = 0; zc[i] != 0; ++i) {
if (max <= zc[i])max = zc[i];
}
return max;
}