Elasticsearch操作索引

操作索引

1. 基本概念

Elasticsearch也是基于Lucene的全文检索库,本质也是存储数据,很多概念与MySQL类似的。

对比关系:

索引(indices)---------------------------------Databases 数据库

  类型(type)----------------------------------Table 数据表

     文档(Document)---------------------------Row 行

	   字段(Field)---------------------------Columns 列 

详细说明:

概念 说明
索引库(indices) indices是index的复数,代表许多的索引,
类型(type) 类型是模拟mysql中的table概念,一个索引库下可以有不同类型的索引,比如商品索引,订单索引,其数据格式不同。不过这会导致索引库混乱,因此未来版本中会移除这个概念
文档(document) 存入索引库原始的数据。比如每一条商品信息,就是一个文档
字段(field) 文档中的属性
映射配置(mappings) 字段的数据类型、属性、是否索引、是否存储等特性

是不是与Lucene和solr中的概念类似。

另外,在SolrCloud中,有一些集群相关的概念,在Elasticsearch也有类似的:

  • 索引集(Indices,index的复数):逻辑上的完整索引 collection1
  • 分片(shard):数据拆分后的各个部分
  • 副本(replica):每个分片的复制

要注意的是:Elasticsearch本身就是分布式的,因此即便你只有一个节点,Elasticsearch默认也会对你的数据进行分片和副本操作,当你向集群添加新数据时,数据也会在新加入的节点中进行平衡。

2. 创建索引

2.1 语法

Elasticsearch采用Rest风格API,因此其API就是一次http请求,你可以用任何工具发起http请求

创建索引的请求格式:

  • 请求方式:PUT

  • 请求路径:/索引库名

  • 请求参数:json格式:

    {
        "settings": {
            "number_of_shards": 3,
            "number_of_replicas": 2
          }
    }
    
    • settings:索引库的设置
      • number_of_shards:分片数量
      • number_of_replicas:副本数量

2.2查看索引设置

语法

Get请求可以帮我们查看索引信息,格式:

GET /索引库名

或者,我们可以使用*来查询所有索引库配置:

2.3.删除索引

删除索引使用DELETE请求

语法

DELETE  /索引库名

示例

再次查看heima2:

当然,我们也可以用HEAD请求,查看索引是否存在:

2.4 映射配置

索引有了,接下来肯定是添加数据。但是,在添加数据之前必须定义映射。

什么是映射?

映射是定义文档的过程,文档包含哪些字段,这些字段是否保存,是否索引,是否分词等

只有配置清楚,Elasticsearch才会帮我们进行索引库的创建(不一定)

2.4.1 创建映射字段

语法

请求方式依然是PUT

PUT /索引库名/_mapping/类型名称
{
  "properties": {
    "字段名": {
      "type": "类型",
      "index": true,
      "store": true,
      "analyzer": "分词器"
    }
  }
}
  • 类型名称:就是前面将的type的概念,类似于数据库中的不同表
    字段名:任意填写 ,可以指定许多属性,例如:
  • type:类型,可以是text、long、short、date、integer、object等
  • index:是否索引,默认为true
  • store:是否存储,默认为false
  • analyzer:分词器,这里的ik_max_word即使用ik分词器

示例

发起请求:

PUT heima/_mapping/goods
{
  "properties": {
    "title": {
      "type": "text",
      "analyzer": "ik_max_word"
    },
    "images": {
      "type": "keyword",
      "index": "false"
    },
    "price": {
      "type": "float"
    }
  }
}

响应结果:

{
  "acknowledged": true
}

2.4.2 查看映射关系

语法:

GET /索引库名/_mapping

示例:

GET /heima/_mapping

响应:

{
  "heima": {
    "mappings": {
      "goods": {
        "properties": {
          "images": {
            "type": "keyword",
            "index": false
          },
          "price": {
            "type": "float"
          },
          "title": {
            "type": "text",
            "analyzer": "ik_max_word"
          }
        }
      }
    }
  }
}

2.4.3 字段属性详解

2.4.3.1 type

Elasticsearch中支持的数据类型非常丰富:

我们说几个关键的:

  • String类型,又分两种:

    • text:可分词,不可参与聚合
    • keyword:不可分词,数据会作为完整字段进行匹配,可以参与聚合
  • Numerical:数值类型,分两类

    • 基本数据类型:long、interger、short、byte、double、float、half_float
    • 浮点数的高精度类型:scaled_float
      • 需要指定一个精度因子,比如10或100。elasticsearch会把真实值乘以这个因子后存储,取出时再还原。
  • Date:日期类型

    elasticsearch可以对日期格式化为字符串存储,但是建议我们存储为毫秒值,存储为long,节省空间。

2.4.3.2.index

index影响字段的索引情况。

  • true:字段会被索引,则可以用来进行搜索。默认值就是true
  • false:字段不会被索引,不能用来搜索

index的默认值就是true,也就是说你不进行任何配置,所有字段都会被索引。

但是有些字段是我们不希望被索引的,比如商品的图片信息,就需要手动设置index为false。

2.4.3.3 store

是否将数据进行额外存储。

在学习lucene和solr时,我们知道如果一个字段的store设置为false,那么在文档列表中就不会有这个字段的值,用户的搜索结果中不会显示出来。

但是在Elasticsearch中,即便store设置为false,也可以搜索到结果。

原因是Elasticsearch在创建文档索引时,会将文档中的原始数据备份,保存到一个叫做_source的属性中。而且我们可以通过过滤_source来选择哪些要显示,哪些不显示。

而如果设置store为true,就会在_source以外额外存储一份数据,多余,因此一般我们都会将store设置为false,事实上,store的默认值就是false。

2.4.3.4 boost

激励因子,这个与lucene中一样

其它的不再一一讲解,用的不多,大家参考官方文档:

2.5 新增数据

2.5.1 随机生成id

通过POST请求,可以向一个已经存在的索引库中添加数据。

语法:

POST /索引库名/类型名
{
    "key":"value"
}

示例:

POST /heima/goods/
{
    "title":"小米手机",
    "images":"http://image.leyou.com/12479122.jpg",
    "price":2699.00
}

响应:

{
  "_index": "heima",
  "_type": "goods",
  "_id": "r9c1KGMBIhaxtY5rlRKv",
  "_version": 1,
  "result": "created",
  "_shards": {
    "total": 3,
    "successful": 1,
    "failed": 0
  },
  "_seq_no": 0,
  "_primary_term": 2
}

通过kibana查看数据:

get _search
{
    "query":{
        "match_all":{}
    }
}
{
  "_index": "heima",
  "_type": "goods",
  "_id": "r9c1KGMBIhaxtY5rlRKv",
  "_version": 1,
  "_score": 1,
  "_source": {
    "title": "小米手机",
    "images": "http://image.leyou.com/12479122.jpg",
    "price": 2699
  }
}
  • _source:源文档信息,所有的数据都在里面。
  • _id:这条文档的唯一标示,与文档自己的id字段没有关联

2.5.2 自定义id

如果我们想要自己新增的时候指定id,可以这么做:

POST /索引库名/类型/id值
{
    ...
}

示例:

POST /heima/goods/2
{
    "title":"大米手机",
    "images":"http://image.leyou.com/12479122.jpg",
    "price":2899.00
}

得到的数据:

{
  "_index": "heima",
  "_type": "goods",
  "_id": "2",
  "_score": 1,
  "_source": {
    "title": "大米手机",
    "images": "http://image.leyou.com/12479122.jpg",
    "price": 2899
  }
}

2.5.3 智能判断

在学习Solr时我们发现,我们在新增数据时,只能使用提前配置好映射属性的字段,否则就会报错。

不过在Elasticsearch中并没有这样的规定。

事实上Elasticsearch非常智能,你不需要给索引库设置任何mapping映射,它也可以根据你输入的数据来判断类型,动态添加数据映射。

测试一下:

POST /heima/goods/3
{
    "title":"超米手机",
    "images":"http://image.leyou.com/12479122.jpg",
    "price":2899.00,
    "stock": 200,
    "saleable":true
}

我们额外添加了stock库存,和saleable是否上架两个字段。

来看结果:

{
  "_index": "heima",
  "_type": "goods",
  "_id": "3",
  "_version": 1,
  "_score": 1,
  "_source": {
    "title": "超米手机",
    "images": "http://image.leyou.com/12479122.jpg",
    "price": 2899,
    "stock": 200,
    "saleable": true
  }
}

在看下索引库的映射关系:

{
  "heima": {
    "mappings": {
      "goods": {
        "properties": {
          "images": {
            "type": "keyword",
            "index": false
          },
          "price": {
            "type": "float"
          },
          "saleable": {
            "type": "boolean"
          },
          "stock": {
            "type": "long"
          },
          "title": {
            "type": "text",
            "analyzer": "ik_max_word"
          }
        }
      }
    }
  }
}

stock和saleable都被成功映射了。

2.6 修改数据

把刚才新增的请求方式改为PUT,就是修改了。不过修改必须指定id,

  • id对应文档存在,则修改
  • id对应文档不存在,则新增

比如,我们把id为3的数据进行修改:

PUT /heima/goods/3
{
    "title":"超大米手机",
    "images":"http://image.leyou.com/12479122.jpg",
    "price":3899.00,
    "stock": 100,
    "saleable":true
}

结果:

{
  "took": 17,
  "timed_out": false,
  "_shards": {
    "total": 9,
    "successful": 9,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
      {
        "_index": "heima",
        "_type": "goods",
        "_id": "3",
        "_score": 1,
        "_source": {
          "title": "超大米手机",
          "images": "http://image.leyou.com/12479122.jpg",
          "price": 3899,
          "stock": 100,
          "saleable": true
        }
      }
    ]
  }
}

2.7 删除数据

删除使用DELETE请求,同样,需要根据id进行删除:

语法

DELETE /索引库名/类型名/id值

示例:

3. 查询

我们从4块来讲查询:

  • 基本查询
  • _source过滤
  • 结果过滤
  • 高级查询
  • 排序

3.1 基本查询

基本语法

GET /索引库名/_search
{
    "query":{
        "查询类型":{
            "查询条件":"查询条件值"
        }
    }
}

这里的query代表一个查询对象,里面可以有不同的查询属性

  • 查询类型:
    • 例如:match_allmatchtermrange 等等
  • 查询条件:查询条件会根据类型的不同,写法也有差异,后面详细讲解

3.1.1 查询所有(match_all)

示例:

GET /heima/_search
{
    "query":{
        "match_all": {}
    }
}
  • query:代表查询对象
  • match_all:代表查询所有

结果:

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 1,
    "hits": [
      {
        "_index": "heima",
        "_type": "goods",
        "_id": "2",
        "_score": 1,
        "_source": {
          "title": "大米手机",
          "images": "http://image.leyou.com/12479122.jpg",
          "price": 2899
        }
      },
      {
        "_index": "heima",
        "_type": "goods",
        "_id": "r9c1KGMBIhaxtY5rlRKv",
        "_score": 1,
        "_source": {
          "title": "小米手机",
          "images": "http://image.leyou.com/12479122.jpg",
          "price": 2699
        }
      }
    ]
  }
}
  • took:查询花费时间,单位是毫秒
  • time_out:是否超时
  • _shards:分片信息
  • hits:搜索结果总览对象
    • total:搜索到的总条数
    • max_score:所有结果中文档得分的最高分
    • hits:搜索结果的文档对象数组,每个元素是一条搜索到的文档信息
      • _index:索引库
      • _type:文档类型
      • _id:文档id
      • _score:文档得分
      • _source:文档的源数据

3.1.2 匹配查询(match)

我们先加入一条数据,便于测试:

PUT /heima/goods/3
{
    "title":"小米电视4A",
    "images":"http://image.leyou.com/12479122.jpg",
    "price":3899.00
}

现在,索引库中有2部手机,1台电视:

  • or关系

match类型查询,会把查询条件进行分词,然后进行查询,多个词条之间是or的关系

GET /heima/_search
{
    "query":{
        "match":{
            "title":"小米电视"
        }
    }
}

结果:

"hits": {
    "total": 2,
    "max_score": 0.6931472,
    "hits": [
        {
            "_index": "heima",
            "_type": "goods",
            "_id": "tmUBomQB_mwm6wH_EC1-",
            "_score": 0.6931472,
            "_source": {
                "title": "小米手机",
                "images": "http://image.leyou.com/12479122.jpg",
                "price": 2699
            }
        },
        {
            "_index": "heima",
            "_type": "goods",
            "_id": "3",
            "_score": 0.5753642,
            "_source": {
                "title": "小米电视4A",
                "images": "http://image.leyou.com/12479122.jpg",
                "price": 3899
            }
        }
    ]
}

在上面的案例中,不仅会查询到电视,而且与小米相关的都会查询到,多个词之间是or的关系。

  • and关系

某些情况下,我们需要更精确查找,我们希望这个关系变成and,可以这样做:

GET /heima/_search
{
    "query":{
        "match": {
          "title": {
            "query": "小米电视",
            "operator": "and"
          }
        }
    }
}

结果:

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0.5753642,
    "hits": [
      {
        "_index": "heima",
        "_type": "goods",
        "_id": "3",
        "_score": 0.5753642,
        "_source": {
          "title": "小米电视4A",
          "images": "http://image.leyou.com/12479122.jpg",
          "price": 3899
        }
      }
    ]
  }
}

本例中,只有同时包含小米电视的词条才会被搜索到。

  • or和and之间?

orand 间二选一有点过于非黑即白。 如果用户给定的条件分词后有 5 个查询词项,想查找只包含其中 4 个词的文档,该如何处理?将 operator 操作符参数设置成 and 只会将此文档排除。

有时候这正是我们期望的,但在全文搜索的大多数应用场景下,我们既想包含那些可能相关的文档,同时又排除那些不太相关的。换句话说,我们想要处于中间某种结果。

match 查询支持 minimum_should_match 最小匹配参数, 这让我们可以指定必须匹配的词项数用来表示一个文档是否相关。我们可以将其设置为某个具体数字,更常用的做法是将其设置为一个百分数,因为我们无法控制用户搜索时输入的单词数量:

GET /heima/_search
{
    "query":{
        "match":{
            "title":{
            	"query":"小米曲面电视",
            	"minimum_should_match": "75%"
            }
        }
    }
}

本例中,搜索语句可以分为3个词,如果使用and关系,需要同时满足3个词才会被搜索到。这里我们采用最小品牌数:75%,那么也就是说只要匹配到总词条数量的75%即可,这里3*75% 约等于2。所以只要包含2个词条就算满足条件了。

结果:

3.1.3 多字段查询(multi_match)

multi_matchmatch类似,不同的是它可以在多个字段中查询

GET /heima/_search
{
    "query":{
        "multi_match": {
            "query":    "小米",
            "fields":   [ "title", "subTitle" ]
        }
	}
}

本例中,我们会在title字段和subtitle字段中查询小米这个词

3.1.4 词条匹配(term)

term 查询被用于精确值 匹配,这些精确值可能是数字、时间、布尔或者那些未分词的字符串

GET /heima/_search
{
    "query":{
        "term":{
            "price":2699.00
        }
    }
}

结果:

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
      {
        "_index": "heima",
        "_type": "goods",
        "_id": "r9c1KGMBIhaxtY5rlRKv",
        "_score": 1,
        "_source": {
          "title": "小米手机",
          "images": "http://image.leyou.com/12479122.jpg",
          "price": 2699
        }
      }
    ]
  }
}

3.1.5 多词条精确匹配(terms)

terms 查询和 term 查询一样,但它允许你指定多值进行匹配。如果这个字段包含了指定值中的任何一个值,那么这个文档满足条件:

GET /heima/_search
{
    "query":{
        "terms":{
            "price":[2699.00,2899.00,3899.00]
        }
    }
}

结果:

{
  "took": 4,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 1,
    "hits": [
      {
        "_index": "heima",
        "_type": "goods",
        "_id": "2",
        "_score": 1,
        "_source": {
          "title": "大米手机",
          "images": "http://image.leyou.com/12479122.jpg",
          "price": 2899
        }
      },
      {
        "_index": "heima",
        "_type": "goods",
        "_id": "r9c1KGMBIhaxtY5rlRKv",
        "_score": 1,
        "_source": {
          "title": "小米手机",
          "images": "http://image.leyou.com/12479122.jpg",
          "price": 2699
        }
      },
      {
        "_index": "heima",
        "_type": "goods",
        "_id": "3",
        "_score": 1,
        "_source": {
          "title": "小米电视4A",
          "images": "http://image.leyou.com/12479122.jpg",
          "price": 3899
        }
      }
    ]
  }
}

3.2.结果过滤

默认情况下,elasticsearch在搜索的结果中,会把文档中保存在_source的所有字段都返回。

如果我们只想获取其中的部分字段,我们可以添加_source的过滤

3.2.1.直接指定字段

示例:

GET /heima/_search
{
  "_source": ["title","price"],
  "query": {
    "term": {
      "price": 2699
    }
  }
}

返回的结果:

{
  "took": 12,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
      {
        "_index": "heima",
        "_type": "goods",
        "_id": "r9c1KGMBIhaxtY5rlRKv",
        "_score": 1,
        "_source": {
          "price": 2699,
          "title": "小米手机"
        }
      }
    ]
  }
}

3.2.2.指定includes和excludes

我们也可以通过:

  • includes:来指定想要显示的字段
  • excludes:来指定不想要显示的字段

二者都是可选的。

示例:

GET /heima/_search
{
  "_source": {
    "includes":["title","price"]
  },
  "query": {
    "term": {
      "price": 2699
    }
  }
}

与下面的结果将是一样的:

GET /heima/_search
{
  "_source": {
     "excludes": ["images"]
  },
  "query": {
    "term": {
      "price": 2699
    }
  }
}

3.3 高级查询

3.3.1 布尔组合(bool)

bool把各种其它查询通过must(与)、must_not(非)、should(或)的方式进行组合

GET /heima/_search
{
    "query":{
        "bool":{
        	"must":     { "match": { "title": "大米" }},
        	"must_not": { "match": { "title":  "电视" }},
        	"should":   { "match": { "title": "手机" }}
        }
    }
}

结果:

{
  "took": 10,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0.5753642,
    "hits": [
      {
        "_index": "heima",
        "_type": "goods",
        "_id": "2",
        "_score": 0.5753642,
        "_source": {
          "title": "大米手机",
          "images": "http://image.leyou.com/12479122.jpg",
          "price": 2899
        }
      }
    ]
  }
}

3.3.2 范围查询(range)

range 查询找出那些落在指定区间内的数字或者时间

GET /heima/_search
{
    "query":{
        "range": {
            "price": {
                "gte":  1000.0,
                "lt":   2800.00
            }
    	}
    }
}

range查询允许以下字符:

操作符 说明
gt 大于
gte 大于等于
lt 小于
lte 小于等于

3.3.3 模糊查询(fuzzy)

我们新增一个商品:

POST /heima/goods/4
{
    "title":"apple手机",
    "images":"http://image.leyou.com/12479122.jpg",
    "price":6899.00
}

fuzzy 查询是 term 查询的模糊等价。它允许用户搜索词条与实际词条的拼写出现偏差,但是偏差的编辑距离不得超过2:

GET /heima/_search
{
  "query": {
    "fuzzy": {
      "title": "appla"
    }
  }
}

上面的查询,也能查询到apple手机

我们可以通过fuzziness来指定允许的编辑距离:

GET /heima/_search
{
  "query": {
    "fuzzy": {
        "title": {
            "value":"appla",
            "fuzziness":1
        }
    }
  }
}

3.4 过滤(filter)

条件查询中进行过滤

所有的查询都会影响到文档的评分及排名。如果我们需要在查询结果中进行过滤,并且不希望过滤条件影响评分,那么就不要把过滤条件作为查询条件来用。而是使用filter方式:

GET /heima/_search
{
    "query":{
        "bool":{
        	"must":{ "match": { "title": "小米手机" }},
        	"filter":{
                "range":{"price":{"gt":2000.00,"lt":3800.00}}
        	}
        }
    }
}

注意:filter中还可以再次进行bool组合条件过滤。

无查询条件,直接过滤

如果一次查询只有过滤,没有查询条件,不希望进行评分,我们可以使用constant_score取代只有 filter 语句的 bool 查询。在性能上是完全相同的,但对于提高查询简洁性和清晰度有很大帮助。

GET /heima/_search
{
    "query":{
        "constant_score":   {
            "filter": {
            	 "range":{"price":{"gt":2000.00,"lt":3000.00}}
            }
        }
}

3.5 排序

3.5.1 单字段排序

sort 可以让我们按照不同的字段进行排序,并且通过order指定排序的方式

GET /heima/_search
{
  "query": {
    "match": {
      "title": "小米手机"
    }
  },
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}

3.5.2 多字段排序

假定我们想要结合使用 price和 _score(得分) 进行查询,并且匹配的结果首先按照价格排序,然后按照相关性得分排序:

GET /goods/_search
{
    "query":{
        "bool":{
        	"must":{ "match": { "title": "小米手机" }},
        	"filter":{
                "range":{"price":{"gt":200000,"lt":300000}}
        	}
        }
    },
    "sort": [
      { "price": { "order": "desc" }},
      { "_score": { "order": "desc" }}
    ]
}

4. 聚合aggregations

聚合可以让我们极其方便的实现对数据的统计、分析。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现实时搜索效果。

4.1 基本概念

Elasticsearch中的聚合,包含多种类型,最常用的两种,一个叫,一个叫度量

桶(bucket)

桶的作用,是按照某种方式对数据进行分组,每一组数据在ES中称为一个,例如我们根据国籍对人划分,可以得到中国桶英国桶日本桶……或者我们按照年龄段对人进行划分:010,1020,2030,3040等。

Elasticsearch中提供的划分桶的方式有很多:

  • Date Histogram Aggregation:根据日期阶梯分组,例如给定阶梯为周,会自动每周分为一组
  • Histogram Aggregation:根据数值阶梯分组,与日期类似
  • Terms Aggregation:根据词条内容分组,词条内容完全匹配的为一组
  • Range Aggregation:数值和日期的范围分组,指定开始和结束,然后按段分组
  • ……

bucket aggregations 只负责对数据进行分组,并不进行计算,因此往往bucket中往往会嵌套另一种聚合:metrics aggregations即度量

度量(metrics)

分组完成以后,我们一般会对组中的数据进行聚合运算,例如求平均值、最大、最小、求和等,这些在ES中称为度量

比较常用的一些度量聚合方式:

  • Avg Aggregation:求平均值
  • Max Aggregation:求最大值
  • Min Aggregation:求最小值
  • Percentiles Aggregation:求百分比
  • Stats Aggregation:同时返回avg、max、min、sum、count等
  • Sum Aggregation:求和
  • Top hits Aggregation:求前几
  • Value Count Aggregation:求总数
  • ……

为了测试聚合,我们先批量导入一些数据

创建索引:

PUT /cars
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  },
  "mappings": {
    "transactions": {
      "properties": {
        "color": {
          "type": "keyword"
        },
        "make": {
          "type": "keyword"
        }
      }
    }
  }
}

注意:在ES中,需要进行聚合、排序、过滤的字段其处理方式比较特殊,因此不能被分词。这里我们将color和make这两个文字类型的字段设置为keyword类型,这个类型不会被分词,将来就可以参与聚合

导入数据

POST /cars/transactions/_bulk
{ "index": {}}
{ "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
{ "index": {}}
{ "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
{ "index": {}}
{ "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
{ "index": {}}
{ "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }

4.2 聚合为桶

首先,我们按照 汽车的颜色color来划分

GET /cars/_search
{
    "size" : 0,
    "aggs" : { 
        "popular_colors" : { 
            "terms" : { 
              "field" : "color"
            }
        }
    }
}
  • size: 查询条数,这里设置为0,因为我们不关心搜索到的数据,只关心聚合结果,提高效率
  • aggs:声明这是一个聚合查询,是aggregations的缩写
    • popular_colors:给这次聚合起一个名字,任意。
      • terms:划分桶的方式,这里是根据词条划分
        • field:划分桶的字段

结果:

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "popular_colors": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "red",
          "doc_count": 4
        },
        {
          "key": "blue",
          "doc_count": 2
        },
        {
          "key": "green",
          "doc_count": 2
        }
      ]
    }
  }
}
  • hits:查询结果为空,因为我们设置了size为0
  • aggregations:聚合的结果
  • popular_colors:我们定义的聚合名称
  • buckets:查找到的桶,每个不同的color字段值都会形成一个桶
    • key:这个桶对应的color字段的值
    • doc_count:这个桶中的文档数量

通过聚合的结果我们发现,目前红色的小车比较畅销!

4.3 桶内度量

前面的例子告诉我们每个桶里面的文档数量,这很有用。 但通常,我们的应用需要提供更复杂的文档度量。 例如,每种颜色汽车的平均价格是多少?

因此,我们需要告诉Elasticsearch使用哪个字段使用何种度量方式进行运算,这些信息要嵌套在内,度量的运算会基于内的文档进行

现在,我们为刚刚的聚合结果添加 求价格平均值的度量:

GET /cars/_search
{
    "size" : 0,
    "aggs" : { 
        "popular_colors" : { 
            "terms" : { 
              "field" : "color"
            },
            "aggs":{
                "avg_price": { 
                   "avg": {
                      "field": "price" 
                   }
                }
            }
        }
    }
}
  • aggs:我们在上一个aggs(popular_colors)中添加新的aggs。可见度量也是一个聚合
  • avg_price:聚合的名称
  • avg:度量的类型,这里是求平均值
  • field:度量运算的字段

结果:

  "aggregations": {
    "popular_colors": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "red",
          "doc_count": 4,
          "avg_price": {
            "value": 32500
          }
        },
        {
          "key": "blue",
          "doc_count": 2,
          "avg_price": {
            "value": 20000
          }
        },
        {
          "key": "green",
          "doc_count": 2,
          "avg_price": {
            "value": 21000
          }
        }
      ]
    }
  }

可以看到每个桶中都有自己的avg_price字段,这是度量聚合的结果

4.4 桶内嵌套桶

刚刚的案例中,我们在桶内嵌套度量运算。事实上桶不仅可以嵌套运算, 还可以再嵌套其它桶。也就是说在每个分组中,再分更多组。

比如:我们想统计每种颜色的汽车中,分别属于哪个制造商,按照make字段再进行分桶

GET /cars/_search
{
    "size" : 0,
    "aggs" : { 
        "popular_colors" : { 
            "terms" : { 
              "field" : "color"
            },
            "aggs":{
                "avg_price": { 
                   "avg": {
                      "field": "price" 
                   }
                },
                "maker":{
                    "terms":{
                        "field":"make"
                    }
                }
            }
        }
    }
}
  • 原来的color桶和avg计算我们不变
  • maker:在嵌套的aggs下新添一个桶,叫做maker
  • terms:桶的划分类型依然是词条
  • filed:这里根据make字段进行划分

部分结果:

{"aggregations": {
    "popular_colors": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "red",
          "doc_count": 4,
          "maker": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "honda",
                "doc_count": 3
              },
              {
                "key": "bmw",
                "doc_count": 1
              }
            ]
          },
          "avg_price": {
            "value": 32500
          }
        },
        {
          "key": "blue",
          "doc_count": 2,
          "maker": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "ford",
                "doc_count": 1
              },
              {
                "key": "toyota",
                "doc_count": 1
              }
            ]
          },
          "avg_price": {
            "value": 20000
          }
        },
        {
          "key": "green",
          "doc_count": 2,
          "maker": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "ford",
                "doc_count": 1
              },
              {
                "key": "toyota",
                "doc_count": 1
              }
            ]
          },
          "avg_price": {
            "value": 21000
          }
        }
      ]
    }
  }
}
  • 我们可以看到,新的聚合maker被嵌套在原来每一个color的桶中。
  • 每个颜色下面都根据 make字段进行了分组
  • 我们能读取到的信息:
    • 红色车共有4辆
    • 红色车的平均售价是 $32,500 美元。
    • 其中3辆是 Honda 本田制造,1辆是 BMW 宝马制造。

4.5 划分桶的其它方式

前面讲了,划分桶的方式有很多,例如:

  • Date Histogram Aggregation:根据日期阶梯分组,例如给定阶梯为周,会自动每周分为一组
  • Histogram Aggregation:根据数值阶梯分组,与日期类似
  • Terms Aggregation:根据词条内容分组,词条内容完全匹配的为一组
  • Range Aggregation:数值和日期的范围分组,指定开始和结束,然后按段分组

刚刚的案例中,我们采用的是Terms Aggregation,即根据词条划分桶。

接下来,我们再学习几个比较实用的:

4.5.1 阶梯分桶Histogram

原理:

histogram是把数值类型的字段,按照一定的阶梯大小进行分组。你需要指定一个阶梯值(interval)来划分阶梯大小。

举例:

比如你有价格字段,如果你设定interval的值为200,那么阶梯就会是这样的:

0,200,400,600,...

上面列出的是每个阶梯的key,也是区间的启点。

如果一件商品的价格是450,会落入哪个阶梯区间呢?计算公式如下:

bucket_key = Math.floor((value - offset) / interval) * interval + offset

value:就是当前数据的值,本例中是450

offset:起始偏移量,默认为0

interval:阶梯间隔,比如200

因此你得到的key = Math.floor((450 - 0) / 200) * 200 + 0 = 400

操作一下:

比如,我们对汽车的价格进行分组,指定间隔interval为5000:

GET /cars/_search
{
  "size":0,
  "aggs":{
    "price":{
      "histogram": {
        "field": "price",
        "interval": 5000
      }
    }
  }
}

结果:

{
  "took": 21,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "price": {
      "buckets": [
        {
          "key": 10000,
          "doc_count": 2
        },
        {
          "key": 15000,
          "doc_count": 1
        },
        {
          "key": 20000,
          "doc_count": 2
        },
        {
          "key": 25000,
          "doc_count": 1
        },
        {
          "key": 30000,
          "doc_count": 1
        },
        {
          "key": 35000,
          "doc_count": 0
        },
        {
          "key": 40000,
          "doc_count": 0
        },
        {
          "key": 45000,
          "doc_count": 0
        },
        {
          "key": 50000,
          "doc_count": 0
        },
        {
          "key": 55000,
          "doc_count": 0
        },
        {
          "key": 60000,
          "doc_count": 0
        },
        {
          "key": 65000,
          "doc_count": 0
        },
        {
          "key": 70000,
          "doc_count": 0
        },
        {
          "key": 75000,
          "doc_count": 0
        },
        {
          "key": 80000,
          "doc_count": 1
        }
      ]
    }
  }
}

你会发现,中间有大量的文档数量为0 的桶,看起来很丑。

我们可以增加一个参数min_doc_count为1,来约束最少文档数量为1,这样文档数量为0的桶会被过滤

示例:

GET /cars/_search
{
  "size":0,
  "aggs":{
    "price":{
      "histogram": {
        "field": "price",
        "interval": 5000,
        "min_doc_count": 1
      }
    }
  }
}

结果:

{
  "took": 15,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "price": {
      "buckets": [
        {
          "key": 10000,
          "doc_count": 2
        },
        {
          "key": 15000,
          "doc_count": 1
        },
        {
          "key": 20000,
          "doc_count": 2
        },
        {
          "key": 25000,
          "doc_count": 1
        },
        {
          "key": 30000,
          "doc_count": 1
        },
        {
          "key": 80000,
          "doc_count": 1
        }
      ]
    }
  }
}

完美,!

如果你用kibana将结果变为柱形图,会更好看:

4.5.2 范围分桶range

范围分桶与阶梯分桶类似,也是把数字按照阶段进行分组,只不过range方式需要你自己指定每一组的起始和结束大小。

posted @ 2019-12-08 09:43  if年少有为  阅读(1638)  评论(0编辑  收藏  举报