bzoj 2178

 

这题调精度真痛苦啊(向管理员要了数据才调出来)。

 

用的是hwd在WC2015上讲的方法,考虑将原图分割,根据每个圆的左右边界和圆与圆交点的横坐标来分割,这样原图就被分成很多竖着的长条,并且每一条中间都没有交点,这样就有一个性质:每一条都是"弓形-梯形-弓形 弓形-梯形-弓形..."的形式,然后从一个方向开始,记录当前进入的圆的数量,每当出来就就计算面积。

 

  1 /**************************************************************
  2     Problem: 2178
  3     User: idy002
  4     Language: C++
  5     Result: Accepted
  6     Time:1248 ms
  7     Memory:48560 kb
  8 ****************************************************************/
  9 
 10 #include <cstdio>
 11 #include <cstring>
 12 #include <cmath>
 13 #include <algorithm>
 14 #define eps 1e-11
 15 #define N 2010
 16 using namespace std;
 17 
 18 
 19 inline int sg( long double x ) { return (x>-eps)-(x<eps); }
 20 struct Vector {
 21     long double x, y;
 22     Vector(){}
 23     Vector( long double x, long double y ):x(x),y(y){}
 24     Vector operator+( const Vector & b ) const { return Vector(x+b.x,y+b.y); }
 25     Vector operator-( const Vector & b ) const { return Vector(x-b.x,y-b.y); }
 26     Vector operator*( long double b ) const { return Vector(x*b,y*b); }
 27     Vector operator/( long double b ) const { return Vector(x/b,y/b); }
 28     long double operator^( const Vector & b ) const { return x*b.y-y*b.x; }
 29     long double operator&( const Vector & b ) const { return x*b.x+y*b.y; }
 30     long double ang() { return atan2(y,x); }
 31     long double len() { return sqrt(x*x+y*y); }
 32     long double len2() { return x*x+y*y; }
 33 };
 34 typedef Vector Point;
 35 struct Circle {
 36     Point c;
 37     long double r;
 38     Circle(){}
 39     Circle( Point c, long double r ):c(c),r(r){}
 40     inline bool in( Point &p ) {
 41         Vector vv=p-c;
 42         return (vv.x*vv.x+vv.y*vv.y) < r*r*0.999;
 43     }
 44     Point pt( long double ang ) const {
 45         return c+Vector(cos(ang),sin(ang))*r;
 46     }
 47 };
 48 struct Arc {
 49     int cid, type;
 50     long double al, ar;
 51     Point pa, pb;
 52     Arc(){}
 53     Arc( int cid, int type, const Point &a, const Point &b );
 54     long double area();
 55 };
 56 
 57 int n;
 58 bool del[N], has[N];
 59 long double spt[N*N]; int stot;
 60 Circle cir[N];
 61 Arc arc[N+N];
 62 
 63 bool cmp_arc( const Arc &a, const Arc &b ) {
 64     if( sg(a.pa.y-b.pa.y)!=0 ) return sg(a.pa.y-b.pa.y)<0;
 65     if( sg(a.pb.y-b.pb.y)!=0 ) return sg(a.pb.y-b.pb.y)<0;
 66     if( a.type!=b.type ) return a.type>b.type;
 67     if( a.type==1 ) {
 68         return cir[a.cid].r < cir[b.cid].r;
 69     } else {
 70         return cir[a.cid].r > cir[b.cid].r;
 71     }
 72 }
 73 bool cmp_cir_r( const Circle &a, const Circle &b ) { return a.r<b.r; }
 74 Arc::Arc( int cid, int type, const Point &a, const Point &b ) {
 75     this->cid = cid;
 76     this->type = type;
 77     pa = a;
 78     pb = b;
 79     this->al = (a-cir[cid].c).ang();
 80     this->ar = (b-cir[cid].c).ang();
 81     if( pa.x>pb.x ) swap(pa,pb);
 82 }
 83 long double Arc::area() {
 84     long double da = ar-al;
 85     while( sg(da)<=0 ) da+=M_PI+M_PI;
 86     while( sg(da-M_PI-M_PI)>0 ) da-=M_PI+M_PI;
 87     return (da-sin(da))*cir[cid].r*cir[cid].r/2.0;
 88 }
 89 int ccinter( int ca, int cb, Point *p ) {
 90     if( cir[ca].r<cir[cb].r ) swap(ca,cb);
 91     long double cd = (cir[ca].c - cir[cb].c).len2();
 92     long double s1 = cir[ca].r-cir[cb].r;
 93     long double s2 = cir[ca].r+cir[cb].r;
 94     s1=s1*s1, s2=s2*s2;
 95 
 96     if( sg(cd-s1)<0 || sg(cd-s2)>0 ) return 0;
 97     if( sg(cd-s1)==0 || sg(cd-s2)==0 ) {
 98         long double ang = (cir[cb].c-cir[ca].c).ang();
 99         p[0] = cir[ca].pt(ang);
100         return 1;
101     } 
102     long double r1 = cir[ca].r, r2 = cir[cb].r;
103     long double base = (cir[cb].c-cir[ca].c).ang();
104     long double delta = acos( (r1*r1+cd-r2*r2)/(2.0*r1*sqrt(cd)) );
105     p[0] = cir[ca].pt( base-delta );
106     p[1] = cir[ca].pt( base+delta );
107     return 2;
108 }
109 bool clinter( int c, long double xl, long double xr, Arc *arc ) {
110     long double xlb = cir[c].c.x-cir[c].r;
111     long double xrb = cir[c].c.x+cir[c].r;
112     if( sg(xlb-xr)>=0 || sg(xrb-xl)<=0 ) return false;
113     Point p = cir[c].c;
114     long double r = cir[c].r;
115     long double d1, d2;
116     long double s1 = r*r-(p.x-xl)*(p.x-xl);
117     long double s2 = r*r-(p.x-xr)*(p.x-xr);
118     if( s1<0.0 ) s1=0.0;
119     if( s2<0.0 ) s2=0.0;
120     d1 = sqrt( s1 );
121     d2 = sqrt( s2 );
122     arc[0] = Arc( c, -1, Point(xr,p.y+d2), Point(xl,p.y+d1) );
123     arc[1] = Arc( c, +1, Point(xl,p.y-d1), Point(xr,p.y-d2) );
124     return true;
125 }
126 long double area( long double lf, long double rg ) {
127     int m=0;
128     for( int i=0; i<n; i++ ) 
129         if( clinter(i,lf,rg,arc+m) ) 
130             m += 2;
131     sort( arc, arc+m, cmp_arc );
132 
133     int cc = 0, top;
134     long double rt = 0.0;
135     for( int i=0; i<m; i++ ) {
136         if( cc==0 ) 
137             top = i;
138         cc += arc[i].type;
139         if( cc==0 ) {
140             rt += (rg-lf)*((arc[i].pa+arc[i].pb).y-(arc[top].pa+arc[top].pb).y)/2.0;
141             rt += arc[top].area()+arc[i].area();
142         }
143     }
144     return rt;
145 }
146 bool cmp_eq( long double x, long double y ) {
147     return sg(x-y)==0;
148 }
149 void clean() {
150     int j=0;
151     for( int i=0; i<n; i++ )
152         if( !del[i] ) cir[j++]=cir[i];
153     n = j;
154 }
155 long double area() {
156     Point ip[2];
157     int ic;
158     long double rt = 0.0;
159     for( int i=0; i<n; i++ ) {
160         for( int j=i+1; j<n; j++ ) {
161             ic = ccinter( i, j, ip );
162             if( ic<=1 ) continue;
163             for( int k=0; k<ic; k++ ) {
164                 int q=n;
165                 for( q=0; q<n; q++ ) {
166                     if( q==i || q==j ) continue;
167                     if( cir[q].in(ip[k]) ) 
168                         break;
169                 }
170                 if( q==n ) spt[stot++]=ip[k].x;
171             }
172         }
173     }
174     for( int i=0; i<n; i++ ) {
175         spt[stot++] = cir[i].c.x-cir[i].r;
176         spt[stot++] = cir[i].c.x+cir[i].r;
177     }
178     sort( spt, spt+stot );
179     stot = unique( spt, spt+stot, cmp_eq ) - spt;
180     
181     for( int i=1; i<stot; i++ ) 
182         rt += area( spt[i-1], spt[i] );
183     return rt;
184 }
185 void init() {
186     sort( cir, cir+n, cmp_cir_r );
187     for( int i=0; i<n; i++ )
188         for( int j=i+1; j<n; j++ ) {
189             long double dx = cir[i].c.x-cir[j].c.x;
190             long double dy = cir[i].c.y-cir[j].c.y;
191             long double dij = dx*dx+dy*dy;
192             long double cc = cir[j].r-cir[i].r;
193             cc = cc*cc;
194             if( dij<cc ) del[i]=true;
195         }
196     clean();
197 }
198 int main() {
199     scanf( "%d", &n );
200     for( int i=0; i<n; i++ ) 
201         scanf( "%Lf%Lf%Lf", &cir[i].c.x, &cir[i].c.y, &cir[i].r );
202     init();
203     printf( "%.3Lf\n", area() );
204 }
View Code

 

posted @ 2015-04-13 10:29  idy002  阅读(278)  评论(0编辑  收藏  举报