matlab复杂的科研绘图汇总-----总有一款你喜欢(更新中)

 

目录

1、离散热力图

2、绘制3D球体

3、matlab绘制复杂矢量图

4、精细化作图工具箱 

4、matlab绘制维恩图

5、颜色条 


1、离散热力图

function out = scatplot(x,y,method,radius,N,n,po,ms)
% Scatter plot with color indicating data density
%
% USAGE:
%   out = scatplot(x,y,method,radius,N,n,po,ms)
%   out = scatplot(x,y,dd)
%
% DESCRIPTION:
%   Draws a scatter plot with a colorscale 
%   representing the data density computed 
%   using three methods
%
% INPUT VARIABLES:
%   x,y - are the data points
%   method - is the method used to calculate data densities:
%       'circles' - uses circles with a determined area 
%               centered at each data point
%       'squares' - uses squares with a determined area 
%               centered at each data point
%       'voronoi' - uses voronoi cells to determin data densities
%               default method is 'voronoi'
%   radius - is the radius used for the circles or squares
%       used to calculate the data densities if
%       (Note: only used in methods 'circles' and 'squares'
%           default radius is sqrt((range(x)/30)^2 + (range(y)/30)^2)
%   N - is the size of the square mesh (N x N) used to  
%       filter and calculate contours
%       default is 100
%   n - is the number of coeficients used in the 2-D
%       running mean filter
%       default is 5
%       (Note: if n is length(2), n(2) is tjhe number of
%       of times the filter is applied)
%   po - plot options:
%       0 - No plot
%       1 - plots only colored data points (filtered)
%       2 - plots colored data points and contours (filtered)
%       3 - plots only colored data points (unfiltered)
%       4 - plots colored data points and contours (unfiltered)
%           default is 1
%   ms - uses this marker size for filled circles
%       default is 4
%
% OUTPUT VARIABLE:
%   out - structure array that contains the following fields:
%       dd - unfiltered data densities at (x,y)
%       ddf - filtered data densities at (x,y)
%       radius - area used in 'circles' and 'squares'
%               methods to calculate densities
%       xi - x coordenates for zi matrix 
%       yi - y coordenates for zi matrix
%       zi - unfiltered data densities at (xi,yi)
%       zif - filtered data densities at (xi,yi)
%       [c,h] = contour matrix C as described in
%           CONTOURC and a handle H to a contourgroup object
%       hs = scatter points handles
%
%Copy-Left, Alejandro Sanchez-Barba, 2005

if nargin==0
    scatplotdemo
    return
end
if nargin<3 | isempty(method)
    method = 'vo';
end
if isnumeric(method)
   gsp(x,y,method,2)
   return
else
    method = method(1:2);
end
if nargin<4 | isempty(n)
    n = 5; %number of filter coefficients
end
if nargin<5 | isempty(radius)
    radius = sqrt((range(x)/30)^2 + (range(y)/30)^2);
end
if nargin<6 | isempty(po)
    po = 1; %plot option
end
if nargin<7 | isempty(ms)
    ms = 4; %markersize
end
if nargin<8 | isempty(N)
    N = 100; %length of grid
end
%Correct data if necessary
x = x(:);
y = y(:);
%Asuming x and y match
idat = isfinite(x);
x = x(idat);
y = y(idat);
holdstate = ishold;
if holdstate==0
    cla
end
hold on
%--------- Caclulate data density ---------
dd = datadensity(x,y,method,radius);
%------------- Gridding -------------------
xi = repmat(linspace(min(x),max(x),N),N,1);
yi = repmat(linspace(min(y),max(y),N)',1,N);
zi = griddata(x,y,dd,xi,yi);
%----- Bidimensional running mean filter -----
zi(isnan(zi)) = 0;
coef = ones(n(1),1)/n(1);
zif = conv2(coef,coef,zi,'same');
if length(n)>1
    for k=1:n(2)
        zif = conv2(coef,coef,zif,'same');
    end
end
%-------- New Filtered data densities --------
ddf = griddata(xi,yi,zif,x,y);
%----------- Plotting --------------------
switch po
    case {1,2}
        if po==2
            [c,h] = contour(xi,yi,zif);
            out.c = c;
            out.h = h;
        end %if
        hs = gsp(x,y,ddf,ms);
        out.hs = hs;
        colorbar
    case {3,4}
        if po>3
            [c,h] = contour(xi,yi,zi);
            out.c = c;
        end %if
        hs = gsp(x,y,dd,ms);
        out.hs = hs;
        colorbar    
end %switch
%------Relocate variables and place NaN's ----------
dd(idat) = dd;
dd(~idat) = NaN;
ddf(idat) = ddf;
ddf(~idat) = NaN;
%--------- Collect variables ----------------
out.dd = dd;
out.ddf = ddf;
out.radius = radius;
out.xi = xi;
out.yi = yi;
out.zi = zi;
out.zif = zif;
if ~holdstate
    hold off
end
return
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
function scatplotdemo
po = 2;
method = 'squares';
radius = [];
N = [];
n = [];
ms = 5;
x = randn(1000,1);
y = randn(1000,1);

out = scatplot(x,y,method,radius,N,n,po,ms)

return
%~~~~~~~~~~ Data Density ~~~~~~~~~~~~~~
function dd = datadensity(x,y,method,r)
%Computes the data density (points/area) of scattered points
%Striped Down version
%
% USAGE:
%   dd = datadensity(x,y,method,radius)
%
% INPUT:
%   (x,y) -  coordinates of points
%   method - either 'squares','circles', or 'voronoi'
%       default = 'voronoi'
%   radius - Equal to the circle radius or half the square width
Ld = length(x);
dd = zeros(Ld,1);
switch method %Calculate Data Density
    case 'sq'  %---- Using squares ----
        for k=1:Ld
            dd(k) = sum( x>(x(k)-r) & x<(x(k)+r) & y>(y(k)-r) & y<(y(k)+r) );
        end %for
        area = (2*r)^2;
        dd = dd/area;
    case 'ci'
        for k=1:Ld
            dd(k) = sum( sqrt((x-x(k)).^2 + (y-y(k)).^2) < r );
        end
        area = pi*r^2;
        dd = dd/area;
    case 'vo'  %----- Using voronoi cells ------
        [v,c] = voronoin([x,y]);     
        for k=1:length(c) 
            %If at least one of the indices is 1, 
            %then it is an open region, its area
            %is infinity and the data density is 0
            if all(c{k}>1)   
                a = polyarea(v(c{k},1),v(c{k},2));
                dd(k) = 1/a;
            end %if
        end %for
end %switch
return
%~~~~~~~~~~ Graf Scatter Plot ~~~~~~~~~~~
function varargout = gsp(x,y,c,ms)
%Graphs scattered poits
map = colormap;
ind = fix((c-min(c))/(max(c)-min(c))*(size(map,1)-1))+1;
h = [];
%much more efficient than matlab's scatter plot
for k=1:size(map,1) 
    if any(ind==k)
        h(end+1) = line('Xdata',x(ind==k),'Ydata',y(ind==k), ...
            'LineStyle','none','Color',map(k,:), ...
            'Marker','.','MarkerSize',ms);
    end
end
if nargout==1
    varargout{1} = h; 
end
return
clear,clc;
x = normrnd(10,1,1000,1);
y = x * 3 + normrnd(10,1,1000,1);
scatplot(double(x),double(y))

 效果如下:

2、绘制3D球体

function scatter3sph(X,Y,Z,varargin)
%SCATTER3SPH (X,Y,Z) Makes a 3d scatter plot with 3D spheres
%	SCATTER3SPH is like scatter3 only drawing spheres instead
%		of flat circles, at coordinates specified by vectors X, Y, Z. All three
%		vectors have to be of the same length.
%	SCATTER3SPH(X,Y,Z) draws the spheres with the default size and color.
%	SCATTER3SPH(X,Y,Z,'size',S) draws the spheres with sizes S. If length(S)= 1
%		the same size is used for all spheres.
%	SCATTER3SPH(X,Y,Z,'color',C) draws the spheres with colors speciffied in a
%		N-by-3 matrix C as RGB values.
%	SCATTER3SPH(X,Y,Z,'transp',T) applies transparency level 'T' to the spheres
%		T= 0 => transparent, T= 1 => opaque.
%	Parameter names can be abreviated to 3 letters. For example: 'siz' or 
%		'col'. Case is irrelevant.
%
% Example
% %Coordinates
%  X= 100*rand(9,1); Y= 100*rand(9,1); Z= 100*rand(9,1);
% 
% %Colors: 3 blue, 3 red and 3 green
% C= ones(3,1)*[0 0 1];
% C= [C;ones(3,1)*[1 0 0]];
% C= [C;ones(3,1)*[0 1 0]];
% 
% %Sizes
% S= 5+10*rand(9,1);
% 
% scatter3sph(X,Y,Z,'size',S,'color',C,'trans',0.3);
% axis vis3d

%-- Some checking...
if nargin < 3 error('Need at least three arguments'); return; end
if mean([length(X),length(Y),length(Z)]) ~= length(X) error ('Imput vectors X, Y, Z are of different lengths'); return; end

%-- Defaults
C= ones(length(X),1)*[0 0 1];
S= 0.1*max([X;Y;Z])*ones(length(X),1);
nfacets= 15;
transp= 0.5;

%-- Extract optional arguments
for j= 1:2:length(varargin)
	string= lower(varargin{j});
	switch string(1:min(3,length(string)))
		case 'siz'
			S= varargin{j+1};
			if length(S) == 1
				S= ones(length(X),1)*S;
			elseif length(S) < length(X)
				error('The vector of sizes must be of the same length as coordinate vectors (or 1)');
				return
			end

		case 'col'
			C= varargin{j+1};
			if size(C,2) < 3	error('Colors matrix must have 3 columns'); return; end
			if size(C,1) == 1
				C= ones(length(X),1)*C(1:3);
			elseif size(C,1) < length(X)
				error('Colors matrix must have the same number of rows as length of coordinate vectors (or 1)');
				return
			end

			case 'fac'
				nfacets= varargin{j+1};

			case 'tra'
				transp= varargin{j+1};

		otherwise
			error('Unknown parameter name. Allowed names: ''size'', ''color'', ''facets'', ''transparency'' ');
	end
end
%-- Sphere facets
[sx,sy,sz]= sphere(nfacets);
%--- Correct potential distortion
maxax= max([range(X), range(Y), range(Z)]);
ratios= [range(X)/maxax, range(Y)/maxax, range(Z)/maxax];
sx= sx*ratios(1);
sy= sy*ratios(2);
sz= sz*ratios(3);
%-- Plot spheres
hold on
for j= 1:length(X)
	surf(sx*S(j)+X(j), sy*S(j)+Y(j), sz*S(j)+Z(j),...
		'LineStyle','none',...
		'FaceColor',C(j,:),...
		'FaceAlpha',transp);
end
daspect([ratios(1), ratios(2), ratios(3)]);
light('Position',[1 1 1],'Style','infinit','Color',[1 1 1]);
lighting gouraud;
view(30,30)
clear,clc;
X= 100*rand(9,1); Y= 100*rand(9,1); Z= 100*rand(9,1);
C= ones(3,1)*[0 0 1];
C= [C;ones(3,1)*[1 0 0]];
C= [C;ones(3,1)*[0 1 0]];
S= 5+10*rand(20,1);
scatter3sph(X,Y,Z,'size',S,'color',C,'trans',0.3);
axis vis3d
grid on

3、matlab绘制复杂矢量图

 function hh = quiverwcolorbar(varargin)
% Melissa Day 5/24/2013
% Upgrade of Andrew Diamond's quiverc2wcmap to generate a quiver plot
% with arrows colored according to vector magnitude. 
% Functional differences from quiverc2wcmap:
%   1) Allows user to specify colormap boundaries using 'bound': changes 
%      colorbar axes AND corresponding vector coloring
%      (much more useful for intercomparison of datasets)
%   2) Improved fidelity to magnitude colors in large datasets 
%      (at a cost of increased computation time...)
%      Uses some improvements from DS's vfield_color
%   3) Small clarifications added
% Example:
%             x = rand(1,50).*100;
%             y = rand(1,50).*100;
%             u = rand(1,50) .* 10;
%             v = rand(1,50) .* 10;
%             scale = 0;
%             figure; quiverwcolorbar(x',y',u',v',scale); %compare to:
%             figure; quiverwcolorbar(x',y',u',v',scale,'bounds',[0 10]);
%----------------
% function hh = quiverc2wcmap(varargin)
% Andrew Diamond 3/17/2005
% This is based off of Tobias H鰂fken which was based off of Bertrand Dano
% keeping with their main intent to show a color w/r to magnitude quiver plot
% while maintaining a large amount of quiver API backwards compatability.
% Functional differences from quiverc2:
%   1) This works under 6.5.1
%   2) It handles NaNs
%   3) It draws a colormap that is w/r to the quiver magnitudes (hard coded to
%   20 segments of the colormap as per quiverc2 - seems fine for a quiver).
%   4) Various bug fixes (I think)
% In order to do this I needed some small hacks on 6.5.1's quiver to take a
% color triplet.  I have included as part of this file in a subfunction below.
%----------------
% Comments from quiverc2
% changed Tobias H鰂fken 3-14-05
% totally downstripped version of the former
% split input field into n segments and do a quiver qhich each of them 
 
% Modified version of Quiver to plots velocity vectors as arrows 
% with components (u,v) at the points (x,y) using the current colormap 

% Bertrand Dano 3-3-03
% Copyright 1984-2002 The MathWorks, Inc. 

% changed T. H鰂fken 14.03.05, for high data resolution
% using fixed color "spacing" of 20

%QUIVERC Quiver color plot.
%   QUIVERC(X,Y,U,V) plots velocity vectors as arrows with components (u,v)
%   at the points (x,y).  The matrices X,Y,U,V must all be the same size
%   and contain corresponding position and velocity components (X and Y
%   can also be vectors to specify a uniform grid).  QUIVER automatically
%   scales the arrows to fit within the grid.
%
%   QUIVERC(U,V) plots velocity vectors at equally spaced points in
%   the x-y plane.
%
%   QUIVERC(U,V,S) or QUIVER(X,Y,U,V,S) automatically scales the 
%   arrows to fit within the grid and then stretches them by S.  Use
%   S=0 to plot the arrows without the automatic scaling.
%
%   QUIVERC(...,LINESPEC) uses the plot linestyle specified for
%   the velocity vectors.  Any marker in LINESPEC is drawn at the base
%   instead of an arrow on the tip.  Use a marker of '.' to specify
%   no marker at all.  See PLOT for other possibilities.
%
%   QUIVERC(...,'filled') fills any markers specified.
%
%   H = QUIVERC(...) returns a vector of line handles.
%
%   Example:
%      [x,y] = meshgrid(-2:.2:2,-1:.15:1);
%      z = x .* exp(-x.^2 - y.^2); [px,py] = gradient(z,.2,.15);
%      contour(x,y,z), hold on
%      quiverc(x,y,px,py), hold off, axis image
%
%   See also FEATHER, QUIVER3, PLOT. 
%   Clay M. Thompson 3-3-94
%   Copyright 1984-2002 The MathWorks, Inc. 
%   $Revision: 5.21 $  $Date: 2002/06/05 20:05:16 $ 
%-------------------------------------------------------------
nin = nargin;            %number of inputs

% error(nargchk(2,5,nin));
error(nargchk(2,7,nin)); %added +2 to maxargs to account for 'bounds' add

% Check numeric input arguments
if nin<4,                % quiver(u,v) or quiver(u,v,s)
  [msg,x,y,u,v] = xyzchk(varargin{1:2});
else                     % quiver(x,y,u,v) and beyond
  [msg,x,y,u,v] = xyzchk(varargin{1:4});
end
if ~isempty(msg), error(msg); end

scale=1;                 % This is the default I think.
if(nin == 3)  % quiver(u,v,s)
    if(isscalar(varargin{nin}))
        scale = varargin{nin};
    end
elseif(nin >= 5)  % quiver(x,y,u,v,s) or quiver(x,y,u,v,s,'bounds',[start end])
    if(isscalar(varargin{5}))
        scale = varargin{5};
    end
end

%-------------Define matrix of vector magnitudes-------------
% Define matrix of vector magnitudes 
vr = sqrt(u.^2+v.^2); 

% From quiverc2wcmap:
% if data has Nan, don't let it contaminate the computations that segment the
% data;  I could just do this with vr and then get clever with the indices but
% this make for easy debugging and as this is a graphics routine the computation
% time is completely irrelevant.
nonNaNind = find(~isnan(vr(:)));
xyuvvrNN = [x(nonNaNind),y(nonNaNind),u(nonNaNind),v(nonNaNind),vr(nonNaNind)];
[xyuvvrNNs, xyuvvrNNsi] = sortrows(xyuvvrNN,5);

% From quiverc2wcmap, no longer necessary
% n = 20; %number of colors
% CC = colormap;
% iCCs=round(linspace(1,size(CC,1),n)); 
% iData = round(linspace(0,size(xyuvvrNNs,1),n+1)); 
% figure;

%-------------Generate colorbar-------------
% Includes a clever way to generate (and subsequently hide) an image that 
% is required for colorbar without running out of memory for large datasets.  
%
% Condensed comments from quiverc2wcmap:
% In 6.5.1 if you ever want a colorbar tick marks to reflect real data ranges
% (versus just the indices of a colormap) then there apparently has to be an
% image somewhere in the figure.  Of course, I don't want an image but I figured
% I just make it invisible and then draw the quiver plot over it.
% Unfortunately, it seems that colorbar uses caxis to retrive the data range in
% the image and for invisible images it always seems to be 0 UNLESS you
% explictly reset the caxis.  
% This will work but then the axis will be oversized to accomodate the image
% because images have their first and last vitual "pixels" CENTERED around the
% implicit or explict xmin,xmax,ymin,ymax (as per imagesc documentation) but the
% start and end of each of these "pixels" is +/- half a unit where the unit
% corresponds to subdividing the limits by the number of pixels (-1).  Given
% that formula and given my invisible 2x2 image for which it is desired to
% diplay in an axis that ISN'T oversized (i.e. min(x), max(x), min(y),max(y)) it
% is possible to solve for the limits (i.e. an artifically reduced limit) 
% that need to be specified for imagesc to make its final oversized axis to be the 
% non oversized axis that we really want.
% xa,xb,ya,yb compenstates for the axis extention given by imagesc to make
% pixels centered at the limit extents (etc.).  Note, this "easy"
% formula would only work for 2x2 pixel images.

xs = min(x);    %x(1);
xf = max(x);    %x(end)
xa = (3 * xs + xf)/4;
xb = (3 * xf + xs)/4;
ys = min(y);    %y(1);
yf = max(y);    %y(end)
ya = (3 * ys + yf)/4;
yb = (3 * yf + ys)/4;

% Determine magnitude min/max (which is reflected in colorbar)
colormin = min(xyuvvrNNs(:,5));  %column 5 is NaN-cleared vr
colormax = max(xyuvvrNNs(:,5));

% Allow user to edit bounds using "'bounds',[colormin colormax]" input
for k=1:nin
 if (k~=nin) && (length(varargin{k})==6) && strcmp(varargin{k},'bounds')
     bounds = varargin{k+1}; 
     if isempty(bounds), error('Specify colormap boundaries'); end
         colormin = bounds(1);
         colormax = bounds(2);
 end
end
% mapbounds = reshape(xyuvvrNNs([1,end;1,end],5),2,2); %from quiverc2wcmap
mapbounds = [colormin colormax; colormin colormax];
h=imagesc([xa,xb],[ya,yb],mapbounds);
set(h,'visible','off');

%   Prep colorbar
rang = (colormax-colormin)/colormax;
ticknum = 6;        %if you want to toggle number of ticks on colorbar
incr = rang./(ticknum-1);
B = [colormin/colormax:incr:1];
B = B.*colormax;
C = sprintf(['%4.2e',repmat([' \n%4.2e'], 1, ticknum)],B);
C = str2num(C);
caxis([colormin colormax])
colorbar('EastOutside','ytick',B,'yticklabel',C,...
    'ticklength',[0.04 0.1],'YLim',[B(1) B(ticknum)],'FontSize',20)

% In quiverc2wcmap this loop plotted for each color level (n=20) and was very
% fast, but I found it did not plot some large data sets with enough color
% accuracy.  Switched the loop to examine each data point individually.
% Takes longer but I'm more confident that the colors are correct. Note:
% much of this overhaul was inspired by DS's vfield_color.
hold on;
cmap = jet(64);     %toggle type of colormap
CC = colormap(cmap);
cm_stepsize = (colormax-colormin)/length(CC);
for it=1:size(xyuvvrNNs,1)  %takes ~13 seconds for a 8730-point dataset
% Some quiverc2wcmap fragments for reference:
% for it=1:n %10x faster, but may not be accurate
%     c = CC(iCCs(it),:); %colormap([1:64](it),:) %ie "This RGB color row ="
%     si = iData(it)+1;   %[1:size(data)](it)+1;  %ie "This start row"
%     ei = iData(it+1);   %[1:size(data)](it+1);  %ie "This end row"
%     hh=quiver(xyuvvrNNs(si:ei,1),xyuvvrNNs(si:ei,2),...
%               xyuvvrNNs(si:ei,3),xyuvvrNNs(si:ei,4),scale*it/n,'Color',c)
    cm_index = floor( (xyuvvrNNs(it,5) - colormin) / ( cm_stepsize ) ) + 1;
    if cm_index == 1             %in case colormin is zero
        c = CC(cm_index,:);
    elseif cm_index > length(CC) %in case max(xyuvvrNNs) > colormax
        cm_index = length(CC);
        c = CC(cm_index,:);
    elseif cm_index <= 0         %in case min(xyuvvrNNs) < colormin
        cm_index = 1;
        c = CC(cm_index,:);
    else
        cm_index = cm_index-1;
        c = CC(cm_index,:);
    end
    hh=quiver(xyuvvrNNs(it,1),xyuvvrNNs(it,2),...
              xyuvvrNNs(it,3),xyuvvrNNs(it,4),scale,'Color',c);
end


%----------Rest of document is from quiverc2wcmap---------------
% This is Matlab's 6.5.1 quiver.  I figure that ensures a fair amouint of backward
% compatibility but I needed to hack it to allow a 'Color' property.  Obviously
% a person could do more.
    
function hh = quiver(varargin)
%QUIVER Quiver plot.
%   QUIVER(X,Y,U,V) plots velocity vectors as arrows with components (u,v)
%   at the points (x,y).  The matrices X,Y,U,V must all be the same size
%   and contain corresponding position and velocity components (X and Y
%   can also be vectors to specify a uniform grid).  QUIVER automatically
%   scales the arrows to fit within the grid.
%
%   QUIVER(U,V) plots velocity vectors at equally spaced points in
%   the x-y plane.
%
%   QUIVER(U,V,S) or QUIVER(X,Y,U,V,S) automatically scales the 
%   arrows to fit within the grid and then stretches them by S.  Use
%   S=0 to plot the arrows without the automatic scaling.
%
%   QUIVER(...,LINESPEC) uses the plot linestyle specified for
%   the velocity vectors.  Any marker in LINESPEC is drawn at the base
%   instead of an arrow on the tip.  Use a marker of '.' to specify
%   no marker at all.  See PLOT for other possibilities.
%
%   QUIVER(...,'filled') fills any markers specified.
%
%   H = QUIVER(...) returns a vector of line handles.
%
%   Example:
%      [x,y] = meshgrid(-2:.2:2,-1:.15:1);
%      z = x .* exp(-x.^2 - y.^2); [px,py] = gradient(z,.2,.15);
%      contour(x,y,z), hold on
%      quiver(x,y,px,py), hold off, axis image
%
%   See also FEATHER, QUIVER3, PLOT.

%   Clay M. Thompson 3-3-94
%   Copyright 1984-2002 The MathWorks, Inc. 
%   $Revision: 5.21 $  $Date: 2002/06/05 20:05:16 $

% Arrow head parameters
alpha = 0.33; % Size of arrow head relative to the length of the vector
beta = 0.33;  % Width of the base of the arrow head relative to the length
autoscale = 1; % Autoscale if ~= 0 then scale by this.
plotarrows = 1; % Plot arrows
sym = '';
filled = 0;
ls = '-';
ms = '';
col = 'b';

nin = nargin;
ColorSpecInd = find(strcmpi(varargin, 'color'));
if(length(ColorSpecInd)==1 & nin > ColorSpecInd)
    col = varargin{ColorSpecInd+1};
    varargin = varargin([1:ColorSpecInd-1,ColorSpecInd+2:nin]);
    nin = nin-2;
end
% Parse the string inputs
while isstr(varargin{nin}),
  vv = varargin{nin};
  if ~isempty(vv) & strcmp(lower(vv(1)),'f')
    filled = 1;
    nin = nin-1;
  else
    [l,c,m,msg] = colstyle(vv);
    if ~isempty(msg), 
      error(sprintf('Unknown option "%s".',vv));
    end
    if ~isempty(l), ls = l; end
    if ~isempty(c), col = c; end
    if ~isempty(m), ms = m; plotarrows = 0; end
    if isequal(m,'.'), ms = ''; end % Don't plot '.'
    nin = nin-1;
  end
end
error(nargchk(2,5,nin));
% Check numeric input arguments
if nin<4, % quiver(u,v) or quiver(u,v,s)
  [msg,x,y,u,v] = xyzchk(varargin{1:2});
else
  [msg,x,y,u,v] = xyzchk(varargin{1:4});
end
if ~isempty(msg), error(msg); end

if nin==3 | nin==5, % quiver(u,v,s) or quiver(x,y,u,v,s)
  autoscale = varargin{nin};
end
% Scalar expand u,v
if prod(size(u))==1, u = u(ones(size(x))); end
if prod(size(v))==1, v = v(ones(size(u))); end

if autoscale,
  % Base autoscale value on average spacing in the x and y
  % directions.  Estimate number of points in each direction as
  % either the size of the input arrays or the effective square
  % spacing if x and y are vectors.
  if min(size(x))==1, n=sqrt(prod(size(x))); m=n; else [m,n]=size(x); end
  delx = diff([min(x(:)) max(x(:))])/n;
  dely = diff([min(y(:)) max(y(:))])/m;
  del = delx.^2 + dely.^2;
  if del>0
    len = sqrt((u.^2 + v.^2)/del);
    maxlen = max(len(:));
  else
    maxlen = 0;
  end
  
  if maxlen>0
    autoscale = autoscale*0.9 / maxlen;
  else
    autoscale = autoscale*0.9;
  end
  u = u*autoscale; v = v*autoscale;
end

ax = newplot;
next = lower(get(ax,'NextPlot'));
hold_state = ishold;

% Make velocity vectors
x = x(:).'; y = y(:).';
u = u(:).'; v = v(:).';
uu = [x;x+u;repmat(NaN,size(u))];
vv = [y;y+v;repmat(NaN,size(v))];

% h1 = plot(uu(:),vv(:),[col ls]);
h1 = plot(uu(:),vv(:),ls,'Color',col);

if plotarrows,
  % Make arrow heads and plot them
  hu = [x+u-alpha*(u+beta*(v+eps));x+u; ...
        x+u-alpha*(u-beta*(v+eps));repmat(NaN,size(u))];
  hv = [y+v-alpha*(v-beta*(u+eps));y+v; ...
        y+v-alpha*(v+beta*(u+eps));repmat(NaN,size(v))];
  hold on
 %  h2 = plot(hu(:),hv(:),[col ls]);
  h2 = plot(hu(:),hv(:),ls,'Color',col);
else
  h2 = [];
end

if ~isempty(ms), % Plot marker on base
  hu = x; hv = y;
  hold on
%  h3 = plot(hu(:),hv(:),[col ms]);
  h3 = plot(hu(:),hv(:),ls,'Color',col);
  if filled, set(h3,'markerfacecolor',get(h1,'color')); end
else
  h3 = [];
end
if ~hold_state, hold off, view(2); set(ax,'NextPlot',next); end
if nargout>0, hh = [h1;h2;h3]; end

function retval = isscalar(m)
retval = prod(size(m)) == 1;

clear,clc;
x = rand(1,100).*100;
y = rand(1,100).*100;
u = rand(1,100) .* 10;
v = rand(1,100) .* 10;
scale = 0;
figure; quiverwcolorbar(x',y',u',v',scale); 
figure; quiverwcolorbar(x',y',u',v',scale,'bounds',[0 10]);

4、精细化作图工具箱 

因为是数据文件只能加群:【matlab&&python资源共享】:获取panel-2.14.rar文件

4、matlab绘制维恩图

function varargout = venn (varargin)

%VENN   Plot 2- or 3- circle area-proportional Venn diagram
%
%  venn(A, I)
%  venn(Z)
%  venn(..., F)
%  venn(..., 'ErrMinMode', MODE)
%  H = venn(...)
%  [H, S] = venn(...)
%  [H, S] = venn(..., 'Plot', 'off')
%  S = venn(..., 'Plot', 'off')
%  [...] = venn(..., P1, V1, P2, V2, ...) 
%
%venn(A, I) by itself plots circles with total areas A, and intersection
%area(s) I. For two-circle venn diagrams, A is a two element vector of circle 
%areas [c1 c2] and I is a scalar specifying the area of intersection between 
%them. For three-circle venn diagrams, A is a three element vector [c1 c2 c3], 
%and I is a four element vector [i12 i13 i23 i123], specifiying the 
%two-circle intersection areas i12, i13, i23, and the three-circle
%intersection i123.
%
%venn(Z) plots a Venn diagram with zone areas specified by the vector Z. 
%For a 2-circle venn diagram, Z is a three element vector [z1 z2 z12]
%For a 3-circle venn, Z is a 7 element vector [z1 z2 z3 z12 z13 z23 z123]
%
%venn(..., F) specifies optional optimization options. VENN uses FMINBND to
%locate optimum pair-wise circle distances, and FMINSEARCH to optimize
%overall three-circle alignment. F is a structure with fields specifying
%optimization options for these functions. F may be a two-element array of
%structures, in which case the first structure is used for FMINBND
%function calls, and the second structure is used for FMINSEARCH function
%calls.
%
%venn(..., 'ErrMinMode', MODE)
%Used for 3-circle venn diagrams only. MODE can be 'TotalError' (default), 
%'None', or 'ChowRodgers'. When ErrMinMode is 'None', the positions and 
%sizes of the three circles are fixed by their pairwise-intersections, 
%which means there may be a large amount of error in the area of the three-
%circle intersection. Specifying ErrMinMode as 'TotalError' attempts to 
%minimize the total error in all four intersection zones. The area of the 
%three circles are kept constant in proportion to their populations. The 
%'ChowRodgers' mode uses the the method proposed by Chow and Rodgers 
%[Ref. 1] to draw 'nice' three-circle venn diagrams which appear more 
%visually representative of the desired areas, although the actual areas of 
%the circles are allowed to deviate from requested values.
%
%H = venn(...) returns a two- or three- element vector to the patches 
%representing the circles. 
%
%[H, S] = venn(...) returns a structure containing descriptive values
%computed for the requested venn diagram. S is a structure with the
%following fields, where C is the number of circles (N = 2 or 3), Z is
%the number of zones (Z = 3 or 7), and I is the number of intersection 
%areas (1 or 4)
%
% Radius            C-element vector of circle radii
%
% Position          C*2 array of circle centers
%
% ZoneCentroid      Z*2 array of zone centroids (Can be used for labeling)
%
% CirclePop         C-element vector of supplied circle populations. 
%                   (I.e., the 'true' circle areas)
%
% CircleArea        C-element of actual circle areas
%
% CircleAreaError   = (CircleArea-CirclePop)/CirclePop
%
% IntersectPop      I-element vector of supplied intersection populations
%                   (I.e., the 'true' intersection areas)
%
% IntersectArea     I-element vector of actual intersection areas
%
% IntersectError    = (IntersectArea-IntersectPop)/IntersectPop
%
% ZonePop           Z-element vector of supplied zone populations. (I.e.
%                   'true' zone areas
%
% ZoneArea          Z-element vector of actual zone areas.
%
% ZoneAreaError     = (ZoneArea-ZonePop)/ZonePop
% 
%
%[H, S] = venn(..., 'Plot', 'off')
%S = venn(..., 'Plot', 'off')
%Returns a structure of computed values, without plotting the diagram. This 
%which can be useful when S is used to draw custom venn diagrams or for 
%exporting venn diagram data to another application. When Plot is set to off, 
%the handles vector H is returned as an empty array. Alternatively, the command
%S = venn(..., 'Plot', 'off) will return only the output structure.
%
%[...] = venn(..., P1, V1, P2, V2, ...) 
%Specifies additional patch settings in standard Matlab parameter/value 
%pair syntax. Parameters can be any valid patch parameter. Values for patch 
%parameters can either be single values, or a cell array of length LENGTH(A), 
%in which case each value in the cell array is applied to the corresponding 
%circle in A.
%
%Examples
%
%   %Plot a simple 2-circle venn diagram with custom patch properties
%   figure, axis equal, axis off
%   A = [300 200]; I = 150;
%   venn(A,I,'FaceColor',{'r','y'},'FaceAlpha',{1,0.6},'EdgeColor','black')
%
%   %Compare ErrMinModes
%   A = [350 300 275]; I = [100 80 60 40];
%   figure
%   subplot(1,3,1), h1 = venn(A,I,'ErrMinMode','None');
%   axis image,  title ('No 3-Circle Error Minimization')
%   subplot(1,3,2), h2 = venn(A,I,'ErrMinMode','TotalError');
%   axis image,  title ('Total Error Mode')
%   subplot(1,3,3), h3 = venn(A,I,'ErrMinMode','ChowRodgers');
%   axis image, title ('Chow-Rodgers Mode')
%   set([h1 h2], 'FaceAlpha', 0.6)
%
%   %Using the same areas as above, display the error optimization at each 
%   iteration. Get the output structure.
%   F = struct('Display', 'iter');
%   [H,S] = venn(A,I,F,'ErrMinMode','ChowRodgers','FaceAlpha', 0.6);
%
%   %Now label each zone 
%   for i = 1:7
%       text(S.ZoneCentroid(i,1), S.ZoneCentroid(i,2), ['Zone ' num2str(i)])
%   end
%
%See also patch, bar, optimset, fminbdn, fminsearch
%
%Copyright (C) 2008 Darik Gamble, University of Waterloo.
%dgamble@engmail.uwaterloo.ca
%
%References
%1. S Chow and P Rodgers. Extended Abstract: Constructing Area-Proportional
%   Venn and Euler Diagrams with Three Circles. Presented at Euler Diagrams 
%   Workshop 2005. Paris. Available online: 
%   http://www.cs.kent.ac.uk/pubs/2005/2354/content.pdf
%
%2. S Chow and F Ruskey. Drawing Area-Proportional Venn and Euler Diagrams. 
%   Lecture Notes in Computer Science. 2004. 2912: 466-477. Springer-Verlag. 
%   Available online: http://www.springerlink.com/content/rxhtlmqav45gc84q/
%
%3. MP Fewell. Area of Common Overlap of Three Circles. Australian Government 
%   Department of Defence. Defence Technology and Science Organisation. 2006. 
%   DSTO-TN-0722. Available online:
%   http://dspace.dsto.defence.gov.au/dspace/bitstream/1947/4551/4/DSTO-TN-0722.PR.pdf


%Variable overview
%   A0, A   Desired and actual circle areas
%               A = [A1 A2] or [A1 A2 A3]
%   I0, I   Desired and actual intersection areas
%               I = I12 or [I12 I13 I23 I123]
%   Z0, Z   Desired and actual zone areas
%               Z = [Z1 Z2 Z12] or [Z1 Z2 Z3 Z12 Z13 Z23 Z123]
%   x, y    Circle centers
%               x = [x1 x2] or [x1 x2 x3]
%   r       Circle radii
%               r = [r1 r2] or [r1 r2 r3]
%   d       Pair-wise distances between circles
%               d = d12 or [d12 d13 d23]
    


    %Parse input arguments and preallocate settings
    [A0, I0, Z0, nCirc, fminOpts, vennOpts, patchOpts] = parseArgsIn (varargin);
    [d, x, y, A, I, Z] = preallocVectors (nCirc);
    zoneCentroids = []; %Will only be calculated if needed
    
    %Circle Radii
    r = sqrt(A0/pi);

    %Determine distance between first circle pair    
    d(1) = circPairDist(r(1), r(2), I0(1), fminOpts(1));
    
    %Position of second circle is now known
    x(2) = d(1); 
    
    %First intersection area 
    I(1) = areaIntersect2Circ(r(1), r(2), d(1));
    
    if nCirc==3
        %Pairwise distances for remaining pairs 1&3 and 2&3
        d(2) = circPairDist(r(1), r(3), I0(2), fminOpts(1)); %d13
        d(3) = circPairDist(r(2), r(3), I0(3), fminOpts(1)); %d23

        %Check triangle inequality
        srtD = sort(d);
        if ~(srtD(end)<(srtD(1)+srtD(2)))
            error('venn:triangleInequality', 'Triangle inequality not satisfied')
        end

        %Guess the initial position of the third circle using the law of cosines
        alpha = acos( (d(1)^2 + d(2)^2 - d(3)^2)  / (2 * d(1) * d(2)) );
        x(3) = d(2)*cos(alpha);
        y(3) = d(2)*sin(alpha);

        %Each pair-wise intersection fixes the distance between each pair
        %of circles, so technically there are no degrees of freedom left in
        %which to adjust the three-circle intersection. We can either try
        %moving the third circle around to minimize the total error, or
        %apply Chow-Rodgers 
        
        switch vennOpts.ErrMinMode
            case 'TotalError'
                %Minimize total intersection area error by moving the third circle
                pos = fminsearch(@threeCircleAreaError, [x(3) y(3)], fminOpts(2));
                x(3) = pos(1);
                y(3) = pos(2);
            case 'ChowRodgers'
                %note that doChowRodgersSearch updates x and y in this
                %workspace as a nested fcn
                doChowRodgersSearch;
        end

        %Make sure everything is 'up to date' after optimization
        update3CircleData;
        
    end
    
    %Are we supposed to plot?
    if vennOpts.Plot
        if isempty(vennOpts.Parent)
            vennOpts.Parent = gca;
        end
        hVenn = drawCircles(vennOpts.Parent, x, y, r, patchOpts.Parameters, patchOpts.Values);
    else
        hVenn = [];
    end
    
    %Only determine zone centroids if they're needed 
    %Needed for output structure 
    nOut = nargout;
    if (nOut==1 && ~vennOpts.Plot) || nOut==2
        if nCirc == 2
            %Need to calculate new areas
            A = A0; %Areas never change for 2-circle venn
            Z = calcZoneAreas(2, A, I);
            zoneCentroids = zoneCentroids2(d, r, Z);
        else
            zoneCentroids = zoneCentroids3(x, y, d, r, Z);
        end
    end
        
    %Figure out output arguments
    if nOut==1
        if vennOpts.Plot
            varargout{1} = hVenn;
        else
            varargout{1} = getOutputStruct;
        end
    elseif nOut==2
        varargout{1} = hVenn;
        varargout{2} = getOutputStruct;
    end
        
    
    
    function err = threeCircleAreaError (pos)
        
        x3 = pos(1);
        y3 = pos(2);
        
        %Calculate distances
        d(2) = sqrt(x3^2 + y3^2); %d13
        d(3) = sqrt((x3-d(1))^2 + y3^2); %d23
        
        %Calculate intersections
        %Note: we're only moving the third circle, so I12 is not changing
        I(2:3) = areaIntersect2Circ (r(1:2), r([3 3]), d(2:3)); %I13 and I23
        I(4) = areaIntersect3Circ (r, d); %I123
        
        %Replace 0 (no intersection) with infinite error
        I(I==0) = Inf;
        
        %Error
        err = sum(abs((I-I0)./I0));
        
    end


    function doChowRodgersSearch
        
        %Adapted from Ref. [1]
        
        %Initialize an index matrix to select all 7choose2 zone pairs (21 pairs)
        idx = nchoosek(1:7, 2);
                
        %Which zone-zone pairs are considered equal?
        %Zones within 10% of each other considered equal
        zonePairAreas0 = Z0(idx);
        
        %Percent difference in population between the two members of a pair
        ar0 = 2*abs(zonePairAreas0(:,1)-zonePairAreas0(:,2))./sum(zonePairAreas0, 2)*100;
        eqPairCutoff = 10;  
        pairIsEq = ar0<=eqPairCutoff;
        
        %Calculate allowable range for pairs of zones considered unequal
        if any(~pairIsEq)
            %Sort zone areas
            [zUneqAreas0, zUneqAreasSrtIdx] = sort(zonePairAreas0(~pairIsEq,:), 2);
            
            %Make a real index array out of the inconvenient index sort returns
            n = sum(~pairIsEq);
            zUneqAreasSrtIdx = sub2ind([n,2], [1:n; 1:n]', zUneqAreasSrtIdx);
            
            %rp = (largepopulation/smallpopulation)-1
            rp = zUneqAreas0(:,2)./zUneqAreas0(:,1)-1;
            rpMin = 1 + 0.3*rp;
            rpMax = 1 + 2*rp;
        end
        
        %Preallocate zone error vector
        zoneErr = zeros(1,21); 

        %Initialize independent parameters to search over
        guessParams = [r(1) x(2) r(2) x(3) y(3) r(3)];
        
        %Search!
        pp = fminsearch(@chowRodgersErr, guessParams, fminOpts(2));  
        
        [r(1) x(2) r(2) x(3) y(3) r(3)] = deal(pp(1), pp(2), pp(3), pp(4), pp(5), pp(6));
        
        
        function err = chowRodgersErr (p)
            
            %params = [x2 r2 x3 y3 r3]
            [r(1), x(2), r(2), x(3), y(3), r(3)] = deal(p(1), p(2), p(3), p(4), p(5), p(6));
             
            %After changing x2, r2, x3, y3, and r3, update circle areas,
            %distances, intersection areas, zone areas
            update3CircleData;

            if any(pairIsEq)
                %For zone pairs considered equal, error is equal to square of the
                %distance beyond the cutoff; 0 within cutoff
                zAreas = Z(idx(pairIsEq,:));
                ar = 2*abs(zAreas(:,1)-zAreas(:,2))./sum(zAreas, 2)*100;
                isWithinRange = ar<eqPairCutoff;
                ar(isWithinRange) = 0;
                ar(~isWithinRange) = ar(~isWithinRange) - eqPairCutoff;

                %Amplify error for equal zones with unequal areas
                eqZoneUneqAreaErrorGain = 10;
                ar(~isWithinRange) = ar(~isWithinRange)*eqZoneUneqAreaErrorGain;

                zoneErr(pairIsEq) = ar.^2;
            end

            if any(~pairIsEq)
                %For zone pairs considered unequal, error is equal to square of
                %the distance from the allowable range of rp

                %rp = (largepopulation/smallpopulation)-1
                zUneqPairAreas = Z(idx(~pairIsEq,:));
                
                %Sort based on the population sizes (determined by parent
                %function doChowRodgersSearch)
                zUneqPairAreas = zUneqPairAreas(zUneqAreasSrtIdx);
                rp = zUneqPairAreas(:,2)./zUneqPairAreas(:,1)-1;

                lessThanMin = rp<rpMin;
                moreThanMax = rp>rpMax;
                rp(~lessThanMin & ~moreThanMax) = 0;
                
                %Determine how far out of range errors are
                rp(lessThanMin) = rp(lessThanMin) - rpMin(lessThanMin);
                rp(moreThanMax) = rp(moreThanMax) - rpMax(moreThanMax);          

                %Consider the case where rp < rpMin to be more
                %erroneous than the case where rp > rpMax 
                tooSmallErrorGain = 10;
                rp(lessThanMin) = rp(lessThanMin)*tooSmallErrorGain;

                zoneErr(~pairIsEq) = rp.^2;
            end
            
            %Total error
            err = sum(zoneErr);
            
        end %chowRodgersErr
        
    end %doChowRodgersSearch

    function update3CircleData
        
        %Circle areas
        A = pi*r.^2;

        %Calculate distances
        d(1) = abs(x(2)); %d12
        d(2) = sqrt(x(3)^2 + y(3)^2); %d13
        d(3) = sqrt((x(3)-d(1))^2 + y(3)^2); %d23

        %Calculate actual intersection areas
        I(1:3) = areaIntersect2Circ (r([1 1 2]), r([2 3 3]), d); %I12, I13, I23
        I(4) = areaIntersect3Circ (r, d); %I123

        %Calculate actual zone areas
        Z = calcZoneAreas(3, A, I);

    end

    function S = getOutputStruct
               
        S = struct(...
            'Radius'                ,r                      ,...        
            'Position'              ,[x' y']                ,...
            'ZoneCentroid'          ,zoneCentroids          ,...
            'CirclePop'             ,A0                     ,...
            'CircleArea'            ,A                      ,...
            'CircleAreaError'       ,(A-A0)./A0             ,...
            'IntersectPop'          ,I0                     ,...
            'IntersectArea'         ,I                      ,...
            'IntersectError'        ,(I-I0)./I0             ,...
            'ZonePop'               ,Z0                     ,...
            'ZoneArea'              ,Z                      ,...
            'ZoneAreaError'         ,(Z-Z0)./Z0             );  
        end

end %venn

        
function D = circPairDist (rA, rB, I, opts)
    %Returns an estimate of the distance between two circles with radii rA and
    %rB with area of intersection I
    %opts is a structure of FMINBND search options
    D = fminbnd(@areadiff, 0, rA+rB, opts);
    function dA = areadiff (d)
        intersectArea = areaIntersect2Circ (rA, rB, d);
        dA = abs(I-intersectArea)/I;
    end
end

function hCirc = drawCircles(hParent, xc, yc, r, P, V)

    hAx = ancestor(hParent, 'axes');
    nextplot = get(hAx, 'NextPlot');
    
    %P and V are cell arrays of patch parameter/values
    xc = xc(:); yc = yc(:);     %Circle centers
    r = r(:);                   %Radii
    n = length(r);              
    
    %Independent parameter
    dt = 0.05;
    t = 0:dt:2*pi;

    %Origin centered circle coordinates
    X = r*cos(t);
    Y = r*sin(t);
    
    hCirc = zeros(1,n);
    c = {'r', 'g', 'b'};                        %default colors
    fa = {0.6, 0.6, 0.6};                         %default face alpha
    tag = {'Circle1', 'Circle2', 'Circle3'}; 	%default tag
    
    for i = 1:n
        xx = X(i,:)+xc(i);  
        yy = Y(i,:)+yc(i);
        hCirc(i) = patch (xx, yy, c{i}, 'FaceAlpha', fa{i}, 'Parent', hParent, 'Tag', tag{i});
        if i==1
            set(hAx, 'NextPlot', 'add');
        end
    end
    set(hAx, 'NextPlot', nextplot);

    %Custom patch parameter values
    if ~isempty(P)

        c = cellfun(@iscell, V);

        %Scalar parameter values -- apply to all circles
        if any(~c)
            set(hCirc, {P{~c}}, {V{~c}});
        end

        %Parameters values with one value per circle
        if any(c)
            %Make sure all vals are column cell arrays
            V = cellfun(@(val) (val(:)), V(c), 'UniformOutput', false);
            set(hCirc, {P{c}}, [V{:}])
        end
    end
    
end %plotCircles

 
function A = areaIntersect2Circ (r1, r2, d)
    %Area of Intersection of 2 Circles
    %Taken from [2]
    
    alpha = 2*acos( (d.^2 + r1.^2 - r2.^2)./(2*r1.*d) );
    beta  = 2*acos( (d.^2 + r2.^2 - r1.^2)./(2*r2.*d) );
    
    A =    0.5 * r1.^2 .* (alpha - sin(alpha)) ...  
         + 0.5 * r2.^2 .* (beta - sin(beta));
    
end

function [A, x, y, c, trngArea] = areaIntersect3Circ (r, d)
    %Area of common intersection of three circles
    %This algorithm is taken from [3]. 
    %   Symbol    Meaning
    %     T         theta
    %     p         prime
    %     pp        double prime
        
    %[r1 r2 r3] = deal(r(1), r(2), r(3));
    %[d12 d13 d23] = deal(d(1), d(2), d(3));

    %Intersection points
    [x,y,sinTp,cosTp] = intersect3C (r,d);
    
    if any(isnan(x)) || any(isnan(y))
        A = 0;
        %No three circle intersection
        return
    end
    
    %Step 6. Use the coordinates of the intersection points to calculate the chord lengths c1,
    %c2, c3:
    i1 = [1 1 2];
    i2 = [2 3 3];
    c = sqrt((x(i1)-x(i2)).^2 + (y(i1)-y(i2)).^2)';

    %Step 7: Check whether more than half of circle 3 is included in the circular triangle, so
    %as to choose the correct expression for the area
    lhs = d(2) * sinTp;
    rhs = y(2) + (y(3) - y(2))/(x(3) - x(2))*(d(2)*cosTp - x(2));
    if lhs < rhs
        sign = [-1 -1 1];
    else
        sign = [-1 -1 -1];
    end
    
    %Calculate the area of the three circular segments.
    ca = r.^2.*asin(c/2./r) + sign.*c/4.*sqrt(4*r.^2 - c.^2);

    trngArea = 1/4 * sqrt( (c(1)+c(2)+c(3))*(c(2)+c(3)-c(1))*(c(1)+c(3)-c(2))*(c(1)+c(2)-c(3)) );
    A = trngArea + sum(ca);
    
end

function [x, y, sinTp, cosTp] = intersect3C (r, d)
    %Calculate the points of intersection of three circles
    %Adapted from Ref. [3]
    
    %d = [d12 d13 d23]
    %x = [x12; x13; x23]
    %y = [y12; y13; y23]

    %   Symbol    Meaning
    %     T         theta
    %     p         prime
    %     pp        double prime
    
    x = zeros(3,1);
    y = zeros(3,1);
     
    %Step 1. Check whether circles 1 and 2 intersect by testing d(1)
    if ~( ((r(1)-r(2))<d(1)) && (d(1)<(r(1)+r(2))) )
        %x = NaN; y = NaN;
        %bigfix: no returned values for sinTp, cosTp
        [x, y, sinTp, cosTp] = deal(NaN);
        return
    end

    %Step 2. Calculate the coordinates of the relevant intersection point of circles 1 and 2:
    x(1) = (r(1)^2 - r(2)^2 + d(1)^2)/(2*d(1));
    y(1) = 0.5/d(1) * sqrt( 2*d(1)^2*(r(1)^2 + r(2)^2) - (r(1)^2 - r(2)^2)^2 - d(1)^4 );

    %Step 3. Calculate the values of the sines and cosines of the angles tp and tpp:
    cosTp  =  (d(1)^2 + d(2)^2 - d(3)^2) / (2 * d(1) * d(2));
    cosTpp = -(d(1)^2 + d(3)^2 - d(2)^2) / (2 * d(1) * d(3));
    sinTp  =  (sqrt(1 - cosTp^2));
    sinTpp =  (sqrt(1 - cosTpp^2));

    %Step 4. Check that circle 3 is placed so as to form a circular triangle.
    cond1 = (x(1) - d(2)*cosTp)^2 + (y(1) - d(2)*sinTp)^2 < r(3)^2;
    cond2 = (x(1) - d(2)*cosTp)^2 + (y(1) + d(2)*sinTp)^2 > r(3)^2;
    if  ~(cond1 && cond2)
        x = NaN; y = NaN;
        return
    end

    %Step 5: Calculate the values of the coordinates of the relevant intersection points involving
    %circle 3
    xp13  =  (r(1)^2 - r(3)^2 + d(2)^2) / (2 * d(2));
    %yp13  = -0.5 / d(2) * sqrt( 2 * d(2)^2 * (r(2)^2 + r(3)^2) - (r(1)^2 - r(3)^2)^2 - d(2)^4 );
    yp13  = -0.5 / d(2) * sqrt( 2 * d(2)^2 * (r(1)^2 + r(3)^2) - (r(1)^2 - r(3)^2)^2 - d(2)^4 );

    x(2)   =  xp13*cosTp - yp13*sinTp;
    y(2)   =  xp13*sinTp + yp13*cosTp;

    xpp23 =  (r(2)^2 - r(3)^2 + d(3)^2) / (2 * d(3));
    ypp23 =  0.5 / d(3) * sqrt( 2 * d(3)^2 * (r(2)^2 + r(3)^2) - (r(2)^2 - r(3)^2)^2 - d(3)^4 );

    x(3) = xpp23*cosTpp - ypp23*sinTpp + d(1);
    y(3) = xpp23*sinTpp + ypp23*cosTpp;

end



function z = calcZoneAreas(nCircles, a, i)
    
    %Uses simple set addition and subtraction to calculate the zone areas
    %with circle areas a and intersection areas i

    if nCircles==2
        %a = [A1 A2]
        %i = I12
        %z = [A1-I12, A2-I12, I12]
        z = [a(1)-i, a(2)-i, i];
    elseif nCircles==3
        %a = [A1  A2  A3]
        %i = [I12 I13 I23 I123]
        %z = [A1-I12-I13+I123, A2-I12-I23+I123, A3-I13-I23+I123, ...
        %     I12-I123, I13-I123, I23-I123, I123];
        z = [a(1)-i(1)-i(2)+i(4), a(2)-i(1)-i(3)+i(4), a(3)-i(2)-i(3)+i(4), ...
                i(1)-i(4), i(2)-i(4), i(3)-i(4), i(4)];
    else
        error('')
        %This error gets caught earlier in the stack w. better error msgs
    end
end

function [Cx, Cy, aiz] = centroid2CI (x, y, r)

    %Finds the centroid of the area of intersection of two circles.
    %Vectorized to find centroids for multiple circle pairs
    %x, y, and r are nCirclePairs*2 arrays
    %Cx and Cy are nCirclePairs*1 vectors

    %Centroid of the area of intersection of two circles
    n = size(x,1);
    xic = zeros(n,2);
    az = zeros(n,2);
    
    dx = x(:,2)-x(:,1);
    dy = y(:,2)-y(:,1);
    d = sqrt(dx.^2 + dy.^2);
    
    %Translate the circles so the first is at (0,0) and the second is at (0,d)
    %By symmetry, all centroids are located on the x-axis.
    %The two circles intersect at (xp, yp) and (xp, -yp)
    xp = 0.5*(r(:,1).^2 - r(:,2).^2 + d.^2)./d;

    %Split the inner zone in two
    %Right side (Area enclosed by circle 1 and the line (xp,yp) (xp,-yp)
    %Angle (xp,yp) (X1,Y1) (xp,-yp)
    alpha = 2*acos(xp./r(:,1));
    %Area and centroid of the right side of the inner zone
    [xic(:,1) az(:,1)] = circleChordVals (r(:,1), alpha);
    %Angle (xp,yp) (X2,Y2) (xp,-yp)
    alpha = 2*acos((d-xp)./r(:,2));
    %Area and centroid of the left side of the inner zone
    [xic(:,2) az(:,2)] = circleChordVals (r(:,2), alpha);
    xic(:,2) = d - xic(:,2);

    %Thus the overall centroid  & area of the inner zone
    aiz = sum(az,2);
    Cx = sum(az.*xic,2)./aiz;
    
    %Now translate the centroid back based on the original positions of the
    %circles
    theta = atan2(dy, dx);
    Cy = Cx.*sin(theta) + y(:,1);
    Cx = Cx.*cos(theta) + x(:,1);
    
end

function centroidPos = zoneCentroids2 (d, r, Z)
    
    centroidPos = zeros(3,2);
    
    %Find the centroids of the three zones in a 2-circle venn diagram
    %By symmetry, all centroids are located on the x-axis.
    %First, find the x-location of the middle (intersection) zone centroid
    
    %Centroid of the inner zone
    centroidPos(3,1) = centroid2CI([0 d], [0 0], r);
    
    %Now, the centroid of the left-most zone is equal to the centroid of
    %the first circle (0,0) minus the centroid of the inner zone
    centroidPos(1,1) = -centroidPos(3,1)*Z(3)/Z(1);
    
    %Similarly for the right-most zone; the second circle has centroid at x=d
    centroidPos(2,1) = (d*(Z(2)+Z(3)) - centroidPos(3,1)*Z(3))/Z(2);
    
end

function centroidPos = zoneCentroids3 (x0, y0, d, r, Z)

    Z = Z(:);
        
    %Get area, points of intersection, and chord lengths
    [act, xi, yi, c, atr] = areaIntersect3Circ (r, d);
    atr = atr(:);
    r = r(:);
    
    %Area and centroid of the triangle within the circular triangle is
    xtr = sum(xi/3); 
    ytr = sum(yi/3);
        
    %Now find the centroids of the three segments surrounding the triangle
    i = [1 2; 1 3; 2 3]; 
    xi = xi(i); yi = yi(i);
    [xcs, ycs, acs] = circSegProps (r(:), x0(:), y0(:), xi, yi, c(:));
    
    %Overall centroid of the circular triangle
    xct = (xtr*atr + sum(xcs.*acs))/act;
    yct = (ytr*atr + sum(ycs.*acs))/act;
    
    %Now calculate the centroids of the three two-pair intersection zones
    %(Zones 12 13 23)
    %Entire zone centroid/areas

    %x, y, and r are nCirclePairs*2 arrays
    %Cx and Cy are nCirclePairs*1 vectors
    i = [1 2; 1 3; 2 3];
    [x2c, y2c, a2c] = centroid2CI (x0(i), y0(i), r(i));
    
    %Minus the three-circle intersection zone
    xZI2C = (x2c.*a2c - xct*act)./(a2c-act);
    yZI2C = (y2c.*a2c - yct*act)./(a2c-act);
    
    x0 = x0(:);
    y0 = y0(:);
    
    %Finally, the centroids of the three circles minus the intersection
    %areas
    i1 = [4 4 5]; i2 = [5 6 6];
    j1 = [1 1 2]; j2 = [2 3 3];
    x1C = (x0*pi.*r.^2 - xZI2C(j1).*Z(i1) - xZI2C(j2).*Z(i2) - xct*act)./Z(1:3);
    y1C = (y0*pi.*r.^2 - yZI2C(j1).*Z(i1) - yZI2C(j2).*Z(i2) - yct*act)./Z(1:3);
    
    %Combine and return
    centroidPos = [x1C y1C; xZI2C yZI2C; xct yct];
end


function [x, a] = circleChordVals (r, alpha)
    %For a circle centered at (0,0), with angle alpha from the x-axis to the 
    %intersection of the circle to a vertical chord, find the x-centroid and
    %area of the region enclosed between the chord and the edge of the circle
    %adapted from http://mathworld.wolfram.com/CircularSegment.html
    a = r.^2/2.*(alpha-sin(alpha));                         %Area
    x = 4.*r/3 .* sin(alpha/2).^3 ./ (alpha-sin(alpha));    %Centroid
end

function [xc, yc, area] = circSegProps (r, x0, y0, x, y, c)

    %Translate circle to (0,0)
    x = x-[x0 x0];
    y = y-[y0 y0];

    %Angle subtended by chord
    alpha = 2*asin(0.5*c./r);
       
    %adapted from http://mathworld.wolfram.com/CircularSegment.html
    area = r.^2/2.*(alpha-sin(alpha));                         %Area
    d   = 4.*r/3 .* sin(alpha/2).^3 ./ (alpha-sin(alpha));    %Centroid
   
    %Perpindicular bisector of the chord
    m = -(x(:,2)-x(:,1))./(y(:,2)-y(:,1));
    
    %angle of bisector
    theta = atan(m);
    
    %centroids
    xc = d.*cos(theta);
    yc = d.*sin(theta);
    
    %Make sure we're on the correct side
    %Point of intersection of the perp. bisector and the circle perimeter
    xb = (x(:,1)+x(:,2))/2;
    xc(xb<0) = xc(xb<0)*-1;
    yc(xb<0) = yc(xb<0)*-1;
    
    %Translate back
    xc = xc + x0;
    yc = yc + y0;
end


function [A0, I0, Z0, nCircles, fminOpts, vennOpts, patchOpts] = parseArgsIn (args)

    [A0, I0, Z0] = deal([]);
    nIn = length(args);
    badArgs = false;
    
    %Get the easy cases out of the way
    if nIn == 0
        badArgs = true;
    elseif nIn == 1
        %venn(Z)
        Z0 = args{1};
        nIn = 0;
    elseif nIn == 2
        if isnumeric(args{2})
            %venn (A,I)
            [A0, I0] = deal(args{1:2});
            nIn = 0;
        else
            %venn (Z, F)
            Z0 = args{1};
            args = args(2);
            nIn = 1;
        end
    else
        %Find the first non-numeric input arg
        i = find(~cellfun(@isnumeric, args), 1);
        if i == 2
            %venn(Z, ....)
            Z0 = args{1};
        elseif i == 3
            %venn(A, I, ...)
            [A0, I0] = deal(args{1:2});
        else
            badArgs = true;
        end
        nIn = nIn - i + 1;
        args = args(i:end);
    end
    
    if badArgs
        error('venn:parseInputArgs:unrecognizedSyntax', 'Unrecogized input syntax')
    end
    try
        [A0, I0, Z0] = parseInputAreas (A0, I0, Z0);
    catch
        error('venn:parseArgsIn:parseInputAreas', 'Incorrect size(s) for area vector(s)')
    end
    nCircles = length(A0);
    nZones = length(Z0);
             
    %Any arguments left?
    if nIn > 0 
        
        if isstruct(args{1})
            %FMIN search options
            f = args{1};
           
            nIn = nIn - 1;
            if nIn>0, args = args(2:end); end

            if length(f) == 1
                %Just double up
                fminOpts = [f f];
            elseif length(f) == 2
                %ok
                fminOpts = f;
            else
                error('venn:parseArgsIn', 'FMINOPTS must be a 1 or 2 element structure array.')
            end
        else
            %Use defaults
            fminOpts = [optimset('fminbnd'), optimset('fminsearch')];
        end
    else
        %Use defaults
        fminOpts = [optimset('fminbnd'), optimset('fminsearch')];
    end

    %If there's an even number of args in remaining
    if nIn>0 
        if mod(nIn, 2)==0
            %Parameter/Value pairs
            p = args(1:2:end);
            v = args(2:2:end);
            [vennOpts, patchOpts] = parsePVPairs (p, v, nZones);
        else
            error('venn:parseArgsIn', 'Parameter/Value options must come in pairs')
        end
    else
        vennOpts = defaultVennOptions;
        patchOpts = struct('Parameters', [], 'Values', []);
    end

end %parseArgsIn

function [vennOpts, patchOpts] = parsePVPairs (p, v, nZones)

    p = lower(p);

    %Break up P/V list into Venn parameters and patch parameters
    vennParamNames = {'plot', 'errminmode', 'parent'};
    [isVennParam, idx] = ismember(p, vennParamNames);
    idx = idx(isVennParam);
    %vennParams = p(isVennParam);
    vennVals = v(isVennParam);
    
    %First do Patch options
    patchOpts.Parameters = p(~isVennParam);
    patchOpts.Values = v(~isVennParam);
        
    %Now do Venn options
    vennOpts = defaultVennOptions;
        
    %PLOT
    i = find(idx==1, 1);
    if i
        plot = lower(vennVals{i});
        if islogical(plot)
            vennOpts.Plot = plot;
        else
            if ischar(plot) && any(strcmp(plot, {'on', 'off'}))
                vennOpts.Plot = strcmp(plot, 'on');
            else
                error('venn:parsePVPairs', 'Plot must be ''on'', ''off'', or a logical value.')
            end
        end
    end
    
    %ERRMINMODE
    i = find(idx==2, 1);
    if i
        mode = lower(vennVals{i});
        okModes = {'None', 'TotalError', 'ChowRodgers'};
        [isOkMode, modeIdx] = ismember(mode, lower(okModes));
        if isOkMode                
            vennOpts.ErrMinMode = okModes{modeIdx};
        else
            error('venn:parsePVPairs', 'ErrMinMode must be None, TotalError, or ChowRodgers')
        end
    end

    %PARENT
    i = find(idx==5, 1);
    if i
        h = v{i};
        if length(h)==1 && ishandle(h) 
            vennOpts.Parent = h;
        else
            error('venn:parsePVPairs', 'Parent must be a valid scalar handle')
        end
    end
    
       
end %parsePVPairs

function [A0, I0, Z0] = parseInputAreas (A0, I0, Z0)

    %Switch to row vectors
    A0 = A0(:)';
    I0 = I0(:)';
    Z0 = Z0(:)';

    if isempty(Z0)
        %A0 and I0 supplied
        
        Z0 = calcZoneAreas (length(A0), A0, I0);
    else
        %Z0 supplied
        switch length(Z0)
            case 3
                A0 = Z0(1:2)+Z0(3);
                I0 = Z0(3);
            case 7
                A0 = Z0(1:3)+Z0([4 4 5])+Z0([5 6 6])+Z0(7);
                I0 = [Z0(4:6)+Z0(7) Z0(7)];
            otherwise
                error('')
        end
    end
end

function vennOpts = defaultVennOptions 
    
    vennOpts = struct(...
        'Plot'          ,true               ,...
        'Labels'        ,[]                 ,...
        'PopLabels'     ,false              ,...
        'DrawLabels'    ,false              ,...
        'Parent'        ,[]                 ,...
        'Offset'        ,[0 0]              ,...
        'ErrMinMode'    ,'TotalError'       );
    
end

function [d, x, y, A, I, Z] = preallocVectors (nCirc)

    %Initialize position vectors
    x = zeros(1, nCirc);
    y = zeros(1, nCirc);

    if nCirc==2
        d = 0;
        I = 0;    
        A = zeros(1,2);
        Z = zeros(1,3);

    else %nCirc==3
        d = zeros(1,3);
        I = zeros(1,4);
        A = zeros(1,3);
        Z = zeros(1,7);
    end
end
clear,clc  
%Plot a simple 2-circle venn diagram with custom patch properties
  figure, axis equal, axis off
  A = [300 200]; I = 150;
  venn(A,I,'FaceColor',{'r','y'},'FaceAlpha',{1,0.6},'EdgeColor','black')

  %Compare ErrMinModes
  A = [350 300 275]; I = [100 80 60 40];
  figure
  subplot(1,3,1), h1 = venn(A,I,'ErrMinMode','None');
  axis image,  title ('No 3-Circle Error Minimization')
  subplot(1,3,2), h2 = venn(A,I,'ErrMinMode','TotalError');
  axis image,  title ('Total Error Mode')
  subplot(1,3,3), h3 = venn(A,I,'ErrMinMode','ChowRodgers');
  axis image, title ('Chow-Rodgers Mode')
  set([h1 h2], 'FaceAlpha', 0.6)

5、颜色条 

function varargout = contourfnu(x,y,data,v,cmap,pos_colorbar,overticklabel,method,ninterp,nancolor)
% non-uniform contourf/imagesc/colorbar
%
%    Input variables
% x             : x-coordinates of grid, vector or 2d matrix
% y             : y-coordinates of grid, vector or 2d matrix
%                 If x and y are vectors, then length(x)==size(z,2) and length(y)==size(Z,1). 
%                 If x and y are 2d matrix, they are generated by meshgrid
% data          : 2d matrix to be ploted
%
%     Optional:
% v             : vector of contour levels (default:linspace(datamin,datamax,10))
% cmap          : color map array (default:jet)
% pos_colorbar  : 'none', or location with respect to the axes (default:'eastoutside')
% overticklabel : whether or not label the overrange ticks at colorbar (default:true)
% method        : imagesc, contourf, contour or pcolor (default:imagesc)
% ninterp       : repeatedly interp times in each dimension (default:0)
% nancolor      : axis backgroud color
%
%     Output variable
% hout          : structure with handles
%                 .h     plot handle
%                 .c     contour matrix (method='contourf')
%                 .hc    colorbar handle (pos_colorbar~='none')


datamax = max(data(:));
datamin = min(data(:));

if(~exist('v','var')||isempty(v)),                         v = linspace(datamin,datamax,10); end
if(~exist('cmap','var')||isempty(cmap)),                   cmap = jet;                       end
if(~exist('pos_colorbar','var')||isempty(pos_colorbar)),   pos_colorbar = 'eastoutside';     end
if(~exist('overticklabel','var')||isempty(overticklabel)), overticklabel = true;             end
if(~exist('method','var')||isempty(method)),               method = 'imagesc';               end
if(~exist('ninterp','var')||isempty(ninterp)),             ninterp = 0;                      end
if(ninterp>0)
    data=interp2(data,ninterp);
    if( strcmp(method,'contourf')||strcmp(method,'contour')||strcmp(method,'pcolor') )
        if( isvector(x)&&isvector(y) )  % vector to meshgrid
            [x,y] = meshgrid(x,y);
        end
        x = interp2(x,ninterp);
        y = interp2(y,ninterp);
    end
end
if( strcmp(method,'imagesc')&&~isvector(x) ) % meshgrid to vector
    x = x(1,:);
    y = y(:,1);
end

if(isrow(v)), v = v'; end
v = sort(v);
% extendmin = datamin<v(1);
% extendmax = datamax>v(end);
if(datamin<v(1))
    v = [-inf;v];
end
if(datamax>v(end))
    v = [v;inf];
end
nlev = length(v);

% piecewise linear mapping,  v -> 1:nlev,    data -> 1 to nlev
z = zeros(size(data));
for i=1:nlev-1
    if( i==1 && v(i)==-inf )
        index = data<v(2);
        z(index) = i+(data(index)-datamin)/(v(2)-datamin);
    elseif( i==(nlev-1) && v(i)==inf )
        index = data>=v(end-1);
        z(index) = i+(data(index)-v(end-1))/(datamax-v(end-1));
    else
        index = data>=v(i) & data<v(i+1);
        z(index) = i+(data(index)-v(i))/(v(i+1)-v(i));
    end
end
z(isnan(data)) = nan;

% draw
if(strcmp(method,'imagesc'))
%     hout.h = imagesc(x,y,z);axis xy
    hout.h = imagesc(x,y,z,'AlphaData',~isnan(z));axis xy
elseif(strcmp(method,'contourf'))
    [hout.c,hout.h] = contourf(x,y,z,1:nlev-1);
elseif(strcmp(method,'contour'))
    [hout.c,hout.h] = contour(x,y,z,1:nlev-1);
elseif(strcmp(method,'pcolor'))
    hout.h = pcolor(x,y,z);shading flat
end
if(exist('nancolor','var')), set(gca,'color',nancolor); end
    
% set colormap and colorbar
Ncmap=size(cmap,1);
Ndraw=nlev-1;
cmapdraw(1:Ndraw,:)=cmap( round(linspace(1,Ncmap,Ndraw)) ,:);
colormap(gca,cmapdraw)
caxis([1,nlev])
if(~strcmp(pos_colorbar,'none'))
    hc = colorbar('location',pos_colorbar);
    if(overticklabel)
        vlabel = v;
        if(v(1)==-inf), vlabel(1) = datamin; end
        if(v(end)==inf), vlabel(end) = datamax; end
    else
        vlabel = cellstr(num2str(v));
        if(v(1)==-inf), vlabel(1) = {''}; end
        if(v(end)==inf), vlabel(end) = {''}; end
    end
    if(any(strcmp(pos_colorbar,{'eastoutside','westoutside','east','west'})))
        ylimits = get(hc,'Ylim');
        ystep = (ylimits(2)-ylimits(1))/Ndraw;
        set(hc,'ytick',ylimits(1):ystep:ylimits(2))
        set(hc,'yticklabel',vlabel)
    elseif(any(strcmp(pos_colorbar,{'southoutside','northoutside','south','north'})))
        xlimits = get(hc,'Xlim');
        xstep = (xlimits(2)-xlimits(1))/Ndraw;
        set(hc,'xtick',xlimits(1):xstep:xlimits(2))
        set(hc,'xticklabel',vlabel)
    end
    hout.hc = hc;
end

if nargout > 0
    varargout{1} = hout;
end

实例代码

% Case 1
n = 50;
x = 1:n;
y = 1:n;
data = peaks(n).^4;
contour_levels = [0.5, 10, 100, 500, 1000 ];
contour_levels2 = [0,contour_levels,5000];

% % Case 2
% x=1:0.5:5;
% y=1:0.5:10;
% [x,y] = meshgrid(x,y);
% data = x.^2+exp(y);
% data(end-5:end,end-3:end) = nan;
% data(end-2:end,end-2:end) = inf;
% contour_levels = [5,20,100,1000,10000];
% contour_levels2 = [0,contour_levels,50000];


figure('position',[1,1,1150,800])
subplot(331)
contourf(x,y,data)
colorbar,colormap(jet)
title('original linear cmap')
subplot(332)
contourfnu(x,y,data,contour_levels)
title('imagesc default')
subplot(333)
contourfnu(x,y,data,contour_levels,[],[],[],'contourf')
title('contourf default')
subplot(334)
contourfnu(x,y,data,contour_levels,[],[],false)
title('imagesc overticklabel=false')
subplot(335)
cmap = jet;
cmap(1,:) = [1,1,1]; %white
contourfnu(x,y,data,contour_levels,cmap,[],false)
title('imagesc FirstColorWhite')
subplot(336)
contourfnu(x,y,data,contour_levels2)
title('imagesc AnotherContourLevels')
subplot(337)
contourfnu(x,y,data,contour_levels,[],[],[],[],2)
title('imagesc interp')
subplot(338)
contourfnu(x,y,data,[-inf,contour_levels2,inf],[],[],false)
title('imagesc InfInLevels')
subplot(339)
contourfnu(x,y,data,contour_levels2,[],'southoutside')
title('imagesc PosCbar=''southoutside''')

posted on 2020-09-25 19:30  好玩的MATLAB  阅读(10)  评论(0编辑  收藏  举报  来源

导航