Genetic Algorithms with python 学习笔记ch5
利用遗传算法解决图着色问题
我们使用4个颜色来为美国地图着色,但要确保没有相邻的州具有相同的颜色。程序实现的过程中将不过分讨论地图的表示,只需各个州之间的相邻关系简单的表示就可以了。
graphColoringTests.py 完整代码如下;
import csv
import unittest
import datetime
import genetic
def load_data(localFileName):
with open(localFileName, mode= 'r') as infile:
reader = csv.reader(infile)
lookup = {row[0]: row[1].split(';') for row in reader if row}
return lookup
class Rule:
def __init__(self, node, adjacent):
if node < adjacent:
node, adjacent = adjacent, node
self.Node = node
self.Adjacent = adjacent
def __eq__(self, other):
return self.Node == other.Node and \
self.Adjacent == other.Node
def __hash__(self):
return hash(self.Node) * 397 ^ hash(self.Adjacent)
def __str__(self):
return self.Node + " -> " + self.Adjacent
def IsValid(self, genes, nodeIndexLookup):
index = nodeIndexLookup[self.Node]
adjacentStateIndex = nodeIndexLookup[self.Adjacent]
return genes[index] != genes[adjacentStateIndex]
def build_rules(items):
rulesAdded = {}
for state, adjacent in items.items():
for adjacentState in adjacent:
if adjacentState == '':
continue
rule = Rule(state, adjacentState)
if rule in rulesAdded:
rulesAdded[rule] += 1
else:
rulesAdded[rule] = 1
for k,v in rulesAdded.items():
if v != 2:
print("rule {} is not bidirectional".format(k))
return rulesAdded.keys()
class GraphColoringTests(unittest.TestCase):
def test(self):
states = load_data("adjacent_states.csv")
rules = build_rules(states)
optimalValue = len (rules)
stateIndexLookup ={key: index
for index, key in enumerate(sorted(states))}
colors = ["Orange", "Yellow", "Green", "Blue"]
colorLookup = {color[0]: color for color in colors}
geneset = list(colorLookup.keys())
startTime = datetime.datetime.now()
def fnDisplay(candidate):
display(candidate, startTime)
def fnGetFitness(genes):
return get_fitness(genes, rules, stateIndexLookup)
best = genetic.get_best(fnGetFitness, len(states),
optimalValue, geneset, fnDisplay)
self.assertTrue(not optimalValue > best.Fitness)
keys = sorted(states.keys())
for index in range(len(states)):
print(keys[index] + " is " + colorLookup[best.Genes[index]])
def display(candidate, startTime):
timeDiff = datetime.datetime.now() - startTime
print("{}\t{}\t{}".format(
''.join(map(str, candidate.Genes)),
candidate.Fitness,
timeDiff))
def get_fitness(genes, rules, stateIndexLookup):
rulesThatPass = sum(1 for rule in rules
if rule.IsValid(genes, stateIndexLookup))
return rulesThatPass
第一部分为读取文件,文件中的每一行格式为:州1,(州2;州3;州4),表示州1与有分号分隔开的其他三个州相邻。下面的函数 load_data 功能为读取文件然后将有关各州之间相邻关系的键值对进行返回。
def load_data(localFileName):
with open(localFileName, mode= 'r') as infile:
reader = csv.reader(infile)
lookup = {row[0]: row[1].split(';') for row in reader if row}
return lookup
下面所描述的 Rule 类主要表示一对相邻关系。
class Rule:
def __init__(self, node, adjacent):
if node < adjacent:
node, adjacent = adjacent, node
self.Node = node
self.Adjacent = adjacent
def __eq__(self, other):
return self.Node == other.Node and \
self.Adjacent == other.Node
def __hash__(self):
return hash(self.Node) * 397 ^ hash(self.Adjacent)
def __str__(self):
return self.Node + " -> " + self.Adjacent
def IsValid(self, genes, nodeIndexLookup):
index = nodeIndexLookup[self.Node]
adjacentStateIndex = nodeIndexLookup[self.Adjacent]
return genes[index] != genes[adjacentStateIndex]
下面的函数 build_rules 表示为每一对相邻的点建立相邻关系,并且保证相邻关系是双向的。
def build_rules(items):
rulesAdded = {}
for state, adjacent in items.items():
for adjacentState in adjacent:
if adjacentState == '':
continue
rule = Rule(state, adjacentState)
if rule in rulesAdded:
rulesAdded[rule] += 1
else:
rulesAdded[rule] = 1
for k,v in rulesAdded.items():
if v != 2:
print("rule {} is not bidirectional".format(k))
return rulesAdded.keys()
下面这个类表示测试图着色问题的具体流程:
首先读取文件,然后建立邻接关系,在调用engine求最优解。
class GraphColoringTests(unittest.TestCase):
def test(self):
states = load_data("adjacent_states.csv")
rules = build_rules(states)
optimalValue = len (rules)
stateIndexLookup ={key: index
for index, key in enumerate(sorted(states))}
colors = ["Orange", "Yellow", "Green", "Blue"]
colorLookup = {color[0]: color for color in colors}
geneset = list(colorLookup.keys())
startTime = datetime.datetime.now()
def fnDisplay(candidate):
display(candidate, startTime)
def fnGetFitness(genes):
return get_fitness(genes, rules, stateIndexLookup)
best = genetic.get_best(fnGetFitness, len(states),
optimalValue, geneset, fnDisplay)
self.assertTrue(not optimalValue > best.Fitness)
keys = sorted(states.keys())
for index in range(len(states)):
print(keys[index] + " is " + colorLookup[best.Genes[index]])
另一个重要的部分就是计算适应值,这里的适应值就是计算有效的着色对数,即当两个相邻的州为不同颜色,那么这一对州之间的着色是有效的,如果有效的对数等于所有相邻的关系数,则为最优解。
def get_fitness(genes, rules, stateIndexLookup):
rulesThatPass = sum(1 for rule in rules
if rule.IsValid(genes, stateIndexLookup))
return rulesThatPass