编程之法:面试和算法心得(最大连续乘积子串)
内容全部来自编程之法:面试和算法心得一书,实现是自己写的使用的是java
题目描述
给一个浮点数序列,取最大乘积连续子串的值,例如 -2.5,4,0,3,0.5,8,-1,则取出的最大乘积连续子串为3,0.5,8。也就是说,上述数组中,3 0.5 8这3个数的乘积30.58=12是最大的,而且是连续的。
分析与解法
此最大乘积连续子串与最大乘积子序列不同,请勿混淆,前者子串要求连续,后者子序列不要求连续。也就是说,最长公共子串(Longest CommonSubstring)和最长公共子序列(LongestCommon Subsequence,LCS)是:
- 子串(Substring)是串的一个连续的部分,
- 子序列(Subsequence)则是从不改变序列的顺序,而从序列中去掉任意的元素而获得的新序列;
更简略地说,前者(子串)的字符的位置必须连续,后者(子序列LCS)则不必。比如字符串“ acdfg ”同“ akdfc ”的最长公共子串为“ df ”,而它们的最长公共子序列LCS是“ adf ”,LCS可以使用动态规划法解决。
解法一
或许,读者初看此题,可能立马会想到用最简单粗暴的方式:两个for循环直接轮询。
但这种蛮力的方法的时间复杂度为O(n^2),能否想办法降低时间复杂度呢?
解法二
考虑到乘积子序列中有正有负也还可能有0,我们可以把问题简化成这样:数组中找一个子序列,使得它的乘积最大;同时找一个子序列,使得它的乘积最小(负数的情况)。因为虽然我们只要一个最大积,但由于负数的存在,我们同时找这两个乘积做起来反而方便。也就是说,不但记录最大乘积,也要记录最小乘积。
假设数组为a[],直接利用动态规划来求解,考虑到可能存在负数的情况,我们用maxend来表示以a[i]结尾的最大连续子串的乘积值,用minend表示以a[i]结尾的最小的子串的乘积值,那么状态转移方程为:
maxend = max(max(maxend * a[i], minend * a[i]), a[i]);
minend = min(min(maxend * a[i], minend * a[i]), a[i]);
初始状态为maxend = minend = a[0]。
参考代码如下:
public static double maxProductSubstring(double[] a) { double maxEnd = a[0]; double minEnd = a[0]; double maxResult = a[0]; for (int i = 1; i < a.length; ++i) { double end1 = maxEnd * a[i], end2 = minEnd * a[i]; maxEnd = Math.max(Math.max(end1, end2), a[i]); minEnd = Math.min(Math.min(end1, end2), a[i]); maxResult = Math.max(maxResult, maxEnd); } return maxResult; }
动态规划求解的方法一个for循环搞定,所以时间复杂度为O(n)。