【网络流24题】 7. 试题库问题 题解
题意
假设一个试题库中有\(n\)道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取\(m\)道题组成试卷。并要求试卷包含指定类型的试题。对于给定的组卷要求,计算满足要求的组卷方案。
思路
本题的思路比较显然,从源点向所有种类连接一条容量为该种类题目数量的边,从每一个种类向该种类的每一道题连一条容量为\(1\)的边,最后从每一道题向汇点连一条容量为\(1\)的边,跑最大流即可。
代码
/**
* luogu P2763 https://www.luogu.com.cn/problem/P2763
* Dinic
**/
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = 2000;
const int maxm = 2e5 + 5;
const int S = 0;
const int T = maxn - 1;
const int INF = 0x3f3f3f3f;
struct Edge {
int to, nxt, val;
}e[maxm];
int head[maxn], numedge, n, m, sum, depth[maxn];
inline void _ADD(int from, int to, int val) {
e[numedge].to = to;
e[numedge].val = val;
e[numedge].nxt = head[from];
head[from] = numedge;
numedge++;
}
inline void AddEdge(int from, int to, int val) {
_ADD(from, to, val);
_ADD(to, from, 0);
}
inline bool bfs() {
memset(depth, 0, sizeof(depth));
depth[S] = 1;
queue<int> q;
q.push(S);
while (!q.empty()) {
int u = q.front();
q.pop();
for (int i = head[u]; ~i; i = e[i].nxt) {
int to = e[i].to;
if (!depth[to] && e[i].val > 0) {
depth[to] = depth[u] + 1;
q.push(to);
}
}
}
return depth[T];
}
inline int dfs(int u, int flow) {
if (u == T || !flow) return flow;
int res = 0;
for (int i = head[u]; ~i; i = e[i].nxt) {
int to = e[i].to;
if (depth[to] > depth[u] && e[i].val > 0) {
int di = dfs(to, min(flow, e[i].val));
if (di > 0) {
flow -= di;
e[i].val -= di;
e[i ^ 1].val += di;
res += di;
}
}
}
if (!res) depth[u] = 0;
return res;
}
int Dinic() {
int res = 0;
while (bfs())
res += dfs(S, INF);
return res;
}
int main() {
memset(head, -1, sizeof(head));
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
int x;
scanf("%d", &x);
sum += x;
AddEdge(S, i, x);
}
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d", &x);
for (int j = 1; j <= x; j++) {
scanf("%d", &y);
AddEdge(y, i + n, 1);
}
AddEdge(i + n, T, 1);
}
// for (int i = 0; i <= n + m; i++) {
// printf("%d:\n", i);
// for (int j = head[i]; ~j; j = e[j].nxt) {
// int to = e[j].to;
// if (e[j].val)
// printf("%d %d\n", to, e[j].val);
// }
// // putchar('\n');
// }
int res = Dinic();
if (res < sum) {
printf("No Solution!\n");
}
else {
for (int i = 1; i <= n; i++) {
printf("%d:", i);
for (int j = head[i]; ~j; j = e[j].nxt) {
int to = e[j].to;
if (to > n && !e[j].val) {
printf(" %d", to - n);
}
}
putchar('\n');
}
}
return 0;
}