空间数据分析软件Geoda
Geoda
GeoDa是一个免费、开源的空间数据分析软件。 通过探索和建模空间模式,GeoDa向用户提供了全新的空间数据分析视角。
GeoDa是由 Luc Anselin 博士和其团队开发的. 该程序提供了友好的用户界面以及丰富的用于探索性空间数据分析(ESDA)的方法,比如空间自相关统计(spatial autocorrelation statistics)和基本的空间回归分析(spatial regression analysis)。
从2003年2月GeoDa发布第一个版本以来, GeoDa的用户数量 成倍的增长。截止2017年6月,GeoDa的用户数量已经超过了20万。
GeoDa最新发布的版本是1.14。新版本包含了很多新的功能,比如:单变量和多变量的局部Geary聚类分析,集成了经典的(非空间)聚类分析方法(PCA,K-Means,Hierarchical聚类--详细请参考Hoon et al's 2013 "C Clustering Library")。同时GeoDa也支持更多的空间数据格式,支持时空(space-time)数据,支持包括Nokia和Carto提供的底图(Basemap)显示,均值比较图表(averages charts),散点图矩阵(scatter plot matrices),非参数的空间自相关图(nonparametric spatial autocorrelation--correlogram),以及灵活的数据分类方法(flexible data categorization)。
下载地址:
http://geodacenter.github.io/download_windows.html
案例数据下载:https://geodacenter.github.io/data-and-lab/
这里以克利夫兰房价数据为例进行展示
打开属性表
绘制等间隔地图
绘制散点矩阵图
创建空间权重矩阵
绘制Moran散点图
运用空间误差模型(SEM)分析经纬度与房价的关系:
总体感觉用户界面很友好,有很多能进行空间分析的功能