一、操作过程:tarjan算法的基础是DFS。我们准备两个数组Low和Dfn。Low数组是一个标记数组,记录该点所在的强连通子图所在搜索子树的根节点的 Dfn值(很绕嘴,往下看你就会明白),Dfn数组记录搜索到该点的时间,也就是第几个搜索这个点的。根据以下几条规则,经过搜索遍历该图(无需回溯)和 对栈的操作,我们就可以得到该有向图的强连通分量。
1.数组的初始化:当首次搜索到点p时,Dfn与Low数组的值都为到该点的时间。
2.堆栈:每搜索到一个点,将它压入栈顶。
3.当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’不在栈中,p的low值为两点的low值中较小的一个。
4.每当搜索到一个点经过以上操作后(也就是子树已经全部遍历)的low值等于dfn值,则将它以及在它之上的元素弹出栈。这些出栈的元素组成一个强连通分量。
5.继续搜索(或许会更换搜索的起点,因为整个有向图可能分为两个不连通的部分),直到所有点被遍历。
二、操作原理:由于每个顶点只访问过一次,每条边也只访问过一次,我们就可以在O(n+m)的时间内求出有向图的强连通分量。但是,这么做的原因是什么呢?
1.Tarjan算法基于定理:在任何深度优先搜索中,同一强连通分量内的所有顶点均在同一棵深度优先搜索树中。也就是说,强连通分量一定是有向图的某个深搜树子树。
2.可以证明,当一个点既是强连通子图Ⅰ中的点,又是强连通子图Ⅱ中的点,则它是强连通子图Ⅰ∪Ⅱ中的点。
3.这样,我们用low值记录该点所在强连通子图对应的搜索子树的根节点的Dfn值。注意,该子树中的元素在栈中一定是相邻的,且根节点在栈中一定位于所有子树元素的最下方。
4.强连通分量是由若干个环组成的。所以,当有环形成时(也就是搜索的下一个点已在栈中),我们将这一条路径的low值统一,即这条路径上的点属于同一个强连通分量。
5.如果遍历完整个搜索树后某个点的dfn值等于low值,则它是该搜索子树的根。这时,它以上(包括它自己)一直到栈顶的所有元素组成一个强连通分量。
上面的原理完美的证明了Tarjan算法的可行性和正确性。至于这些原理的证明?【一脸茫然...】仔细想想,这些好像都是显然的.....
所以,证明完成.(●'◡'●)
三、伪代码:
tarjan(u) { DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值 Stack.push(u) // 将节点u压入栈中 for each (u, v) in E // 枚举每一条边 if (v is not visted) // 如果节点v未被访问过 tarjan(v) // 继续向下找 Low[u] = min(Low[u], Low[v]) else if (v in S) // 如果节点v还在栈内 Low[u] = min(Low[u], DFN[v]) if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根 repeat v = S.pop // 将v退栈,为该强连通分量中一个顶点 print v until (u== v) }
四、来个例子吧,出自集训队资料图论:【强迫症截图截了好久...】
五、模板代码:
void tarjan(int i) { int j; DFN[i]=LOW[i]=++Dindex; // 取时间戳 instack[i]=true; // 当前节点入栈 Stap[++Stop]=i; for (edge *e=V[i]; e; e=e->next) { j=e->t; if (!DFN[j]) // j没有访问过,j是i的子女,(i, j)为树枝边 { tarjan(j); if (LOW[j]<LOW[i]) LOW[i]=LOW[j]; // 取子女可以到达的最早时间戳 } else if (instack[j] && DFN[j]<LOW[i]) LOW[i]=DFN[j]; // j被访问过,j是i的祖先,(i, j) 是一条回边,取边中可以到达的最早时间戳 } if (DFN[i]==LOW[i]) // 以i为根的强连通分量已经找到 { Bcnt++; do { j=Stap[Stop--]; instack[j]=false; Belong[j]=Bcnt; } while (j!=i); } } void solve() { int i; Stop=Bcnt=Dindex=0; memset(DFN,0,sizeof(DFN)); for (i=1; i<=N; i++) if (!DFN[i]) tarjan(i); }
例题链接:http://www.cnblogs.com/icode-girl/p/5348065.html