问题描述

如下图所示,3 x 3 的格子中填写了一些整数。

+--*--+--+
|10* 1|52|
+--****--+
|20|30* 1|
*******--+
| 1| 2| 3|
+--+--+--+

我们沿着图中的星号线剪开,得到两个部分,每个部分的数字和都是60。

本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。

如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。

如果无法分割,则输出 0。

输入格式

程序先读入两个整数 m n 用空格分割 (m,n<10)。

表示表格的宽度和高度。

接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000。

输出格式
输出一个整数,表示在所有解中,包含左上角的分割区可能包含的最小的格子数目。
样例输入1
3 3
10 1 52
20 30 1
1 2 3
样例输出1
3
样例输入2
4 3
1 1 1 1
1 30 80 2
1 1 1 100
样例输出2
10
 
果然赤果果的dfs回溯一些就过了。
附代码:
 1 /*
 2  好像是很直接的dfs+回溯
 3  */
 4 
 5 #include <stdio.h>
 6 #include <string.h>
 7 #include <iostream>
 8 #include <queue>
 9 #define inf 100000000
10 using namespace std;
11 
12 int mp[20][20];
13 int ans, sum;
14 int n, m;
15 
16 int dir[4][2] = {1, 0, -1, 0, 0, 1, 0, -1};
17 int vis[20][20];
18 
19 bool check(int a, int b) {
20     if (a >= 0 && a < n && b >= 0 && b < m && !vis[a][b]) {
21         return true;
22     }
23     return false;
24 }
25 
26 void dfs(int x, int y, int num, int tsum) {
27     if (tsum == sum/2) {
28         if (ans > num) {
29             ans = num;
30             return;
31         }
32     }
33 
34     for (int i=0; i<4; ++i) {
35         int tx = x + dir[i][0];
36         int ty = y + dir[i][1];
37         if (check(tx, ty)) {
38             vis[tx][ty] = 1;
39             dfs(tx, ty, num+1, tsum+mp[tx][ty]);
40             vis[tx][ty] = 0;
41         }
42     }
43 }
44 
45 int main() {
46     while(cin >> m >> n) {
47         ans = inf;
48         sum = 0;
49         memset(vis, 0, sizeof(vis));
50 
51         for (int i=0; i<n; ++i) {
52             for (int j=0; j<m; ++j) {
53                 cin >> mp[i][j];
54                 sum += mp[i][j];
55             }
56         }
57 
58         vis[0][0] = 1;
59         dfs(0, 0, 1, mp[0][0]);
60         cout << ans << endl;
61     }
62     return 0;
63 }
View Code

 

 

posted on 2016-03-07 21:28  小小八  阅读(288)  评论(0编辑  收藏  举报