BLDC电机【直流无刷电机】

特点:

无刷直流电机(Brushless Direct Current Motor, BLDCM)克服了有刷直流电机的先天性缺陷,以电子换向器取代了机械换向器,所以无刷直流电机既具有直流电机良好的调速性能等特点,又具有交流电机结构简单、无换向火花、运行可靠和易于维护等优点。无刷直流电机的实质是直流电源输入,采用电子逆变器将直流电转换为交流电有转子位置反馈的三相交流永磁同步电机

 

 

为了转动BLDC电机,必须控制线圈的电流方向及时机(所以就有了六部换相)。


图2-A是将BLDC电机的定子(线圈)和转子(永磁体)模式化的结果。

使用该图片,思考一下转子旋转的情况吧。思考使用3个线圈的情况。虽然实际上也有使用6个或以上的线圈的情况,但在考虑原理的基础上,每120度放一个线圈,使用3个线圈。电机将电气(电压、电流)转换为机械性旋转。图2-A的BLDC电机又是如何转动呢?先来看一看电机中发生了什么吧。


图2-A:BLDC电机转动原理BLDC电机中每隔120度放置一个线圈,总共放置三个线圈,控制通电相或线圈的电流

如图2-A所示,BLDC电机使用3个线圈。这三个线圈用以在通电后生成磁通量,将其命名为U、V、W。将该线圈通电试试看吧。线圈U(以下简称为“线圈”)上的电流路径记为U相,V的记录为V相,W的记录为W相。

接下来看一看U相吧。向U相通电后,将产生如图2-B所示的箭头方向的磁通量。但实际上,U、V、W的电缆都是互相连接着的,因此无法仅向U相通电。

在这里,从U相向W相通电,会如图2-C所示在U、W产生磁通量。合成U和W的两个磁通量,变为图2-D所示的较大的磁通量。永磁体将进行旋转,以使该合成磁通量与中央的永磁体(转子)的N极方向相同。


图2-B:BLDC电机的转动原理从U相向W向通电。首先,只关注线圈U部分,则发现会产生如箭头般的磁通量-因为这个磁通量产生的磁场会促使永磁的转子进行转动


图2-C:BLDC电机的转动原理从U相向W相通电,则会产生方向不同的2个磁通量


2-D:BLDC电机的转动原理从U相向W相通电,可以认为产生了两个磁通量合成的磁通量


若改变合成磁通量的方向,则永磁体也会随之改变。配合永磁体的位置,切换U相、V相、W相中通电的相,以变更合成磁通量的方向。连续执行此操作,则合成磁通量将发生旋转,从而产生磁场,转子旋转。

图3所示的是通电相与合成磁通量的关系。在该例中,按顺序从1-6变更通电模式,则合成磁通量将顺时针旋转。通过变更合成磁通量的方向,控制速度,可控制转子的旋转速度。将切换这6种通电模式,控制电机的控制方法称为“120度通电控制”。

 

 


图3:转子的永久磁石会像被合成磁通量牵引一样旋转,电机的轴也会因此旋转

 

使用正弦波控制,进行流畅的转动

接下来,尽管在120度通电控制下合成磁通量的方向会发生旋转,但其方向不过只有6种。比如将图3的“通电模式1”改为“通电模式2”,则合成磁通量的方向将变化60度。然后转子将像被吸引一样发生旋转。接下来,从“通电模式2”改为“通电模式3”,则合成磁通量的方向将再次变化60度。转子将再次被该变化所吸引。这一现象将反复出现。这一动作将变得生硬。有时这动作还会发出噪音。

能消除120度通电控制的缺点,实现流畅的转动的正是“正弦波控制”。在120度通电控制中,合成磁通量被固定在了6个方向。进行控制,使其进行连续的变化。在图2-C的例子中,U和W生成的磁通量大小相同。但是,若能较好地控制U相、V相、W相,则可让线圈各自生成大小各异的磁通量,精密地控制合成磁通量的方向。调整U相、V相、W相各相的电流大小,与此同时生成了合成磁通量。通过控制这一磁通量连续生成,可使电机流畅地转动。


图4:正弦波控制正弦波控制可控制3相上的电流,生成合成磁通量,实现流畅的转动。可生成120度通电控制无法生成的方向上生成合成磁通量

posted @ 2022-08-05 10:00  流水江湖  阅读(869)  评论(0编辑  收藏  举报