网络流——最大流最小割

网络流黄页~~~
最大流是增广思想的杰作,针对增光特点,采用dinic阻塞流分层
调试编译通过代码
这个没什么,肯定不会考裸,模板的构建是最重要的
并且还有最小割最大流定理
(相等)
利用拆点实现割集划分即选与不选,放a或b
 1 #include<cstring>
 2 #include<cstdio>
 3 #include<algorithm>
 4 #include<vector>
 5 #include<queue>
 6 #include<iostream>
 7 #include<cmath>
 8 #include<cstdlib>
 9 #define maxn 10010
10 #define maxm 100010;
11 #define inf 2123450000
12 using namespace std;
13 struct edge{
14     int from,to,cap,flow;
15 };
16 vector <edge> edges;
17 vector <int > g[maxn];
18 int vis[maxn],cur[maxn],d[maxn];
19 int m=0,n,a,b,c,k,s,t;
20 void add_edge(int a,int b,int c)
21 {
22     m+=2;
23     edges.push_back({a,b,c,0});
24     edges.push_back({b,a,0,0});
25     g[b].push_back(m-1);
26     g[a].push_back(m-2);
27 }
28 bool bfs()
29 {
30     memset(vis,0,sizeof(vis));
31     memset(d,0,sizeof(d));
32     queue<int> q;
33     d[s]=0,vis[s]=1;
34     q.push(s);
35     while(!q.empty())
36     {
37         
38         int u=q.front();q.pop();
39         for(int i=0;i<g[u].size();i++)
40         {
41             edge &e=edges[g[u][i]];
42             if(!vis[e.to]&&e.cap>e.flow)
43             {
44             //cout<<"herebb"<<endl;
45                 d[e.to]=d[u]+1;
46                 vis[e.to]=1;
47                 q.push(e.to);
48             }
49         }
50     }
51     return vis[t];
52 }
53 int dfs(int x,int a)
54 {
55     if(x==t||a==0)return a;
56     int f=0,flow=0;
57     for(int &i=cur[x];i<g[x].size();i++)
58     {
59         edge &e=edges[g[x][i]];
60         if(d[e.to]==d[x]+1&&(f=dfs(e.to,min(a,(e.cap-e.flow)))))
61         {
62             a-=f;
63             flow+=f;
64             e.flow+=f;
65             edges[g[x][i]^1].flow-=f;//fanhu - 
66             if(a<=0)break;
67         }
68     }
69     return flow;
70 } 
71 long long maxflow(int s,int t)
72 {
73     long long flow=0;
74     while(bfs())
75     {
76         //cout<<"here"<<endl;
77         memset(cur,0,sizeof(cur));
78         flow+=(long long)dfs(s,2000000000);
79     }
80     return flow;
81 } 
82 int main()
83 {
84     cin>>n>>k>>s>>t;
85     for(int i=1;i<=k;i++)
86     {
87         cin>>a>>b>>c;
88         add_edge(a,b,c);
89     }
90     cout<<maxflow(s,t)<<endl;
91     return 0;
92 }
 

 

posted @ 2018-04-10 14:35  zZ1358m  阅读(218)  评论(0编辑  收藏  举报