lightoj 1151 Snakes and Ladders 期望 高斯消元

设出每个点的期望r[i]。

如果i点会瞬移到to[i],则r[i] = r[to[i]]

否则,r[i] = (Σr[j] + (6-cnt)*r[i])/6 + 1 (j为可以往右走的位置,cnt表示其数目,至多6个)

值得注意的是,这个位置最后可能会发现出界了然后原地呆一轮,这种情况一样有贡献,需要注意。

然后列出方程,高斯消元即可。

 1 #include <cstdio>
 2 #include <cmath>
 3 #include <algorithm>
 4 using namespace std;
 5 const int MAXN = 105;
 6 const double eps = 1e-9;
 7 double a[MAXN][MAXN]; 
 8 int T,cas,n,equ,var;
 9 int to[MAXN];
10 
11 int gauss(int n,int m)
12 {
13     int col,row,mxr;
14     for(row=col=1;row<=n&&col<=m;row++,col++)
15     {
16         mxr=row;
17         for(int i=row+1;i<=n;i++)
18             if(fabs(a[i][col])>fabs(a[row][col]))
19                 mxr=i;
20         if(mxr!=row) swap(a[row],a[mxr]);
21         if(fabs(a[row][col])<eps)
22         {
23             row--;
24             continue;
25         }
26         for(int i=1;i<=n;i++) //消成上三角矩阵
27             if(i!=row&&fabs(a[i][col])>eps)
28                 for(int j=m;j>=col;j--)
29                     a[i][j]-=a[row][j]/a[row][col]*a[i][col];
30     }
31     row--;
32     for(int i=row;i>=1;i--) //回代成对角矩阵
33     {
34         for(int j=i+1;j<=row;j++)
35             a[i][m]-=a[j][m]*a[i][j];
36         a[i][m]/=a[i][i];
37     }
38     return row;
39 }
40 int main()
41 {
42     for (scanf("%d",&T);T != 0;T--)
43     {
44         cas++;
45         for (int i = 1;i <= 100;i++)
46         {
47             for (int j = 1;j <= 101;j++)
48                 a[i][j] = 0;
49             to[i] = 0;
50         }
51         scanf("%d",&n);    
52         int ta,tb;
53         for (int i = 1;i <= n;i++)
54         {
55             scanf("%d%d",&ta,&tb);
56             to[ta] = tb;
57         }
58         for (int i = 1;i <= 99;i++)
59         {
60             if (to[i] != 0)
61             {
62                 a[i][to[i]] = -1.0;
63                 a[i][101] = 0.0;
64                 a[i][i] = 1.0;
65             }    
66             else
67             {
68                 int cnt = min(6,100 - i);
69                 a[i][i] = 1.0 - (6.0 - cnt) / 6.0;
70                 for (int j = i + 1;j <= min(100,i + 6);j++)
71                     a[i][j] = -1.0 / 6;
72                 a[i][101] = 1.0; 
73             }
74         }
75         a[100][100] = 1.0;
76         a[100][101] = 0.0;
77         gauss(100,101);
78         printf("Case %d: %.6lf\n",cas,a[1][101]);
79     }
80     return 0;
81 }

 

posted @ 2019-08-26 13:17  IAT14  阅读(125)  评论(0编辑  收藏  举报