幂函数
定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数
运算:
![](http://images0.cnblogs.com/blog/316046/201309/26144652-4f66e3a763664af8a21af8d3b4288d93.png)
(其中p/q为约分数,即p,q互质)
![](http://images0.cnblogs.com/blog/316046/201309/26154839-7f3ec5eb81c94694940e2c8a065b9c15.jpg)
# plt.plot(x, x ** (1 / 2), label='$0.5$') 一开始老没画好这个图,原因是 1/2 = 0 并不等于 0.5 import matplotlib.pylab as plt import numpy as np x = np.linspace(-8, 8, 1000) plt.figure(figsize=(8, 4)) plt.plot(x, np.power(x, 3), label='$3$') plt.plot(x, np.power(x, 2), label='$2$') plt.plot(x, x, label='$1$') # plt.plot(x, np.power(x, 0.5), label='$0.5$') plt.plot(x, x ** 0.5, label='$0.5$') plt.plot(x, np.power(x, -0.5), label='$-0.5$') plt.plot(x, x * 0 + 1) plt.plot(x, x * 0 - 1) plt.plot(x, x * 0) plt.xlabel('x') plt.ylabel('y') plt.title('power function') plt.ylim(-8, 8) plt.legend() plt.show()