数学基础之数列求和

错位相减

证明等比数列求和 : \(\sum_{k=0}^{n}ap^{k} = a\frac{1-p^{n+1}}{1-p}\)

证明

\[\begin{aligned} S_n &=\sum_{k=0}^{n}ap^{k} = a\sum_{k=0}^{n}p^k\\ pS_n &= a\sum_{k=0}^{n}p^{k+1} = a\sum_{k=1}^{n+1}p^{k}\\ (1-p)S_n &= a(1 - p^{n+1})\\ S_n &= a\frac{1 - p^{n+1}}{1-p} \end{aligned} \]

更一般的, 化简 : \(\sum_{k=0}^{n}kp^k\)

\[\begin{aligned} S_n &= \sum_{k=0}^{n}kp^k\\ pS_n &= \sum_{k=0}^{n}kp^{k+1} = \sum_{k=1}^{n + 1}(k-1)p^{k}\\ (1-p)S_n &= \sum_{k=0}^{n}kp^k - \sum_{k=1}^{n + 1}(k-1)p^{k}\\ (1-p)S_n &= \sum_{k=1}^{n}kp^k - np^{n + 1} - \sum_{k=1}^{n}(k-1)p^{k}\\ (1-p)S_n &= \sum_{k=1}^{n}p^k - np^{n + 1}\\ (1-p)S_n &= p\frac{1-p^n}{1-p} - np^{n + 1}\\ S_n &= \frac{1}{1-p}(p\frac{1-p^n}{1-p} - np^{n + 1})\\ \end{aligned} \]

裂项相消

化简 \(S_n = \sum_{k=1}^{n}(ak + b)q^k\)

\((ak+b)q^k = f(k + 1)q^{k+1} - f(k)q^{k} , \quad f(k) = Ak + B\)

\[\begin{aligned} &(ak+b)q^k = (qf(k + 1) - f(k))q^{k}\\ &ak+b = qf(k+1) - f(k) = qA(k+1) + qB - Ak - B\\ &ak+b = qf(k+1) - f(k) = (q-1)Ak + qA + (q - 1)B\\ &A = \frac{a}{q-1}, B = \frac{b - qA}{q+1} = \frac{b - q\frac{a}{q-1}}{q-1}\\ \end{aligned} \]

\(f(x)\) 已知, 所以

\[\sum_{k=1}^{n}a_k = f(n+1)q^{n + 1} - f(1)q \]

posted @ 2021-12-12 21:18  youwike  阅读(234)  评论(0编辑  收藏  举报