游走的鱼

导航

python3 获取线上所有mysql的表大于1000万的信息

基于其他博主改编

1.获取所有数据库表信息以ip.json格式保存到当前目录

#!/usr/bin/env python3
# coding: utf-8
import pymysql
import json
hostList=["192.168.1.2","192.168.1.3"]
for h in hostList:
    conn = pymysql.connect(
        host=h,  # mysql ip地址
        user="root",
        passwd="passwd",
        port=3306,  # mysql 端口号,注意:必须是int类型
        connect_timeout = 3  # 超时时间
    )
    cur = conn.cursor()  # 创建游标
    # 获取mysql中所有数据库
    cur.execute('SHOW DATABASES')
    data_all = cur.fetchall()  # 获取执行的返回结果
    # print(data_all)
    dic = {}  # 大字典,第一层
    for i in data_all:
        if i[0] not in dic:  # 判断库名不在dic中时
            # 排序列表,排除mysql自带的数据库
            exclude_list = ["sys", "information_schema", "mysql", "performance_schema"]
            if i[0] not in exclude_list:  # 判断不在列表中时
                # 写入第二层数据
                dic[i[0]] = {'name': i[0], 'table_list': []}
                ta=i[0]
                cur.execute("SELECT CONCAT(table_schema,'.',table_name) AS 'Table Name',  CONCAT(ROUND(table_rows/100000000,2)) AS 'Number of Rows',  CONCAT(ROUND(data_length/(1024*1024*1024),2),'G') AS 'Data Size',  CONCAT(ROUND(index_length/(1024*1024*1024),2),'G') AS 'Index Size' ,  CONCAT(ROUND((data_length+index_length)/(1024*1024*1024),2),'G') AS 'Total' FROM information_schema.TABLES where table_schema='%s' order by ABS(Total) desc;"%ta)
                ret = cur.fetchall()
                for k in ret:
                    table_name=k[0].split('.')[1]
                    print({'cdb_name_ip':h,'db_name':i[0],'tname': table_name, 'rows': k[1],'table_size':k[2],'index_size':k[3],'db_size':k[4]})
                    dic[i[0]]['table_list'].append({'cdb_name_ip':h,'tname': table_name, 'rows': k[1],'table_size':k[2],'index_size':k[3],'db_size':k[4]})

    with open('%s.json'%h,'w',encoding='utf-8') as f:
        f.write(json.dumps(dic))

  

2.遍历当前目录下ip.json格式的文件,并将大于1000万的表行数记录在trows.xls中

#!/usr/bin/env python3
# coding: utf-8
import xlwt
import json
import sys
from collections import OrderedDict
f = xlwt.Workbook()
sheet1 = f.add_sheet('统计', cell_overwrite_ok=True)
row0 = ["cdb_name_ip","db_name", "tname", "rows","table_size","index_size","db_size"]
hostList=["192.168.1.2","192.168.1.3"]
num=0
for h in hostList:
  # 写第一行
    for i in range(0, len(row0)):
        sheet1.write(0, i, row0[i])
    # 加载json文件
    with open("%s.json"%h, 'r') as load_f:
        load_dict = json.load(load_f)  # 反序列化文件
        order_dic = OrderedDict()  # 有序字典
        for key in sorted(load_dict):  # 先对普通字典key做排序
            order_dic[key] = load_dict[key]  # 再写入key

        for i in order_dic:
            # 遍历所有表
            for j in order_dic[i]["table_list"]:
                if j['rows'] is not None:
                # 判断行数大于1000万时,0.1亿
                    trows=float(j['rows'])
                    if trows > 0.1:
                        # 写入库名
                        sheet1.write(num + 1, 0, j['cdb_name_ip'])
                        #写入库IP
                        sheet1.write(num+1,1,i)
                        # 写入表名
                        sheet1.write(num + 1, 2, j['tname'])
                        # 写入行数
                        sheet1.write(num + 1, 3, j['rows'])
                        # 写入行数
                        sheet1.write(num + 1, 4, j['table_size'])
                        # 写入行数
                        sheet1.write(num + 1, 5, j['index_size'])
                        # 写入行数
                        sheet1.write(num + 1, 6, j['db_size'])
                        num += 1  # 自增1
        f.save('trows.xls')

 3、效果如下,rows单位是亿

 

posted on 2022-03-14 20:59  游走的鱼  阅读(286)  评论(0编辑  收藏  举报