2020icpc济南 - A
组合数学 + 高斯消元
[A-Matrix Equation_第 45 届国际大学生程序设计竞赛(ICPC)亚洲区域赛(济南) (nowcoder.com)](https://codeforces.com/problemset/problem/1632/D)
题意
给出两个大小为 \(n\;(1<=n<=200)\) 的矩阵 A,B (A,B个元素都是 0 或 1)。求矩阵 \(C\) 的方案数,满足 A,C的矩阵乘法 %2 == A,C 的对应位置的相乘
思路
- C 的各列是独立的,求出每一列的方案数相乘即可
- 对于 C 的某一列,分别设为 [x1, x2, x3 ... ,xn], 带入等式即可得到一个异或方程组,高斯消元求出自由元个数 cnt,这一列的方案就是 \(2^{cnt}\)
- 用 bitset 优化
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
#include <bitset>
using namespace std;
#define endl "\n"
typedef long long ll;
typedef pair<int, int> PII;
const int N = 210;
const int mod = 998244353;
int n;
int A[N][N], B[N][N];
bitset<N> a[N];
ll qmi(ll a, ll b)
{
ll ans = 1;
while(b)
{
if (b & 1)
ans = ans * a % mod;
b >>= 1;
a = a * a % mod;
}
return ans;
}
int guess()
{
int r, c;
for (c = 1, r = 1; c <= n; c++)
{
int t = r;
for (int i = r; i <= n; i++)
if (a[i][c] > a[t][c]) t = i;
if (a[t][c] == 0)
continue;
swap(a[r], a[t]);
for (int i = r + 1; i <= n; i++)
{
if (a[i][c] == 1)
a[i] ^= a[r];
}
r++;
}
r--;
return n - r;
}
ll solve(int p)
{
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
a[i][j] = A[i][j];
for (int i = 1; i <= n; i++)
{
int x = A[i][i] - B[i][p];
if (x < 0) x += 2;
a[i][i] = x;
}
int cnt = guess();
return qmi(2, cnt);
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
scanf("%d", &A[i][j]);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
scanf("%d", &B[i][j]);
ll ans = 1;
for (int i = 1; i <= n; i++)
ans = ans * solve(i) % mod;
printf("%lld\n", ans);
return 0;
}