子集问题
枚举 \([0,2^n-1]\) 子集 \(O(n^3)\)
for (int s = 0; s < 1 << n; s++)
for (int ns = s; s; ns = (ns - 1) & s)
证明:
法1:
对于每一位
1. s = 0, ns = 0
2. s = 1, ns = 0, 1
每一位有 3 种情况,所以共有 \(3^n\) 个子集
法2:
二项式定理
\(C_n^k*2^k=(2+1)^n\)
子集和问题
高维前缀和
3维为例
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
for (int k = 1; k <= n; k++)
f[i][j][k] += f[i-1][j][k];
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
for (int k = 1; k <= n; k++)
f[i][j][k] += f[i][j-1][k];
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
for (int k = 1; k <= n; k++)
f[i][j][k] += f[i][j][k-1];
子集和 - 题目 - Daimayuan Online Judge
求子集和,可视为 n 维前缀和,每一维只有 0,1 两个状态,因此可用一个整数来表示
for (int i = 0; i < n; i++)
for (int j = 0; j < 1 << n; j++)
if (j >> i & 1)
f[j] += f[j - (1 << i)];
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
using namespace std;
#define endl "\n"
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
const int N = (1 << 22) + 10;
unsigned int A,B,C;
inline unsigned int rng61() {
A ^= A << 16;
A ^= A >> 5;
A ^= A << 1;
unsigned int t = A;
A = B;
B = C;
C ^= t ^ A;
return C;
}
int n;
ll f[N];
int main(){
scanf("%d%u%u%u", &n, &A, &B, &C);
for (int i = 0; i < (1 << n); i++)
f[i] = rng61();
for (int i = 0; i < n; i++)
for (int j = 0; j < 1 << n; j++)
if (j >> i & 1)
f[j] += f[j - (1 << i)];
ull ans = 0;
for (int i = 0; i < 1 << n; i++)
ans ^= f[i];
cout << ans << endl;
return 0;
}