ABC 208 E - Digit Products
E - Digit Products
数位dp
因为只能由 1~9 相乘而来,所以 \(mul=2^a*3^b*5^c*7^d\), \(d<=c<=b<=a<=log_2k\), 所以最多 \(log^4k\) 种乘积,总复杂度为 \(O(log^4k*logn)\)
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
#include <map>
using namespace std;
#define endl "\n"
typedef long long ll;
typedef pair<int, int> PII;
const int N = 20;
int pos;
int bound[N];
ll n, k;
//用map存第四维(乘积),因为乘积可能很大,但个数并不多(只能由2,3,5,7 四个质数相乘而来)
map<ll, ll> f[N][2][2];
ll dfs(int pos, ll mul, bool limit, bool zero)
{
if (pos <= 0)
return !zero && mul <= k;
if (f[pos][limit][zero].count(mul))
return f[pos][limit][zero][mul];
int maxn = limit ? bound[pos] : 9;
ll now = 0;
for (int i = 0; i <= maxn; i++)
{
//不能这样写,因为当前乘积如果大于k,但之后 *0 后就满足条件了,要在递归出口判断
// if (mul * i > k)
// continue;
if (zero && i == 0)
now += dfs(pos - 1, mul, limit && i == bound[pos], true);
else
now += dfs(pos - 1, mul * i, limit && i == bound[pos], false);
}
if (limit)
return now;
return f[pos][limit][zero][mul] = now;
}
ll solve(ll x)
{
pos = 0;
do
{
bound[++pos] = x % 10;
x /= 10;
}while(x);
return dfs(pos, 1, true, true);
}
int main()
{
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n >> k;
cout << solve(n) << endl;
return 0;
}