CF EDU 98 D - Radio Towers
D - Radio Towers
DP
- 一个塔可以覆盖以自身为中心的 1,3,5,..., 个塔
- 所以可以设 \(f[n]\) 为把 n 拆成奇数和的方案数,答案为 \(\frac {f[n]}{2^n}\)
- \(f[n]=f[n-1]+f[n-3]+f[n-5]+...+f[0/1]\), \(f[0]=1\)
- 可用前缀和来加速转移
神奇的是 \(f[n]\) 就是斐波那契数列
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 2e5 + 10;
const int mod = 998244353;
int n;
ll f[N], s[N][2];
ll qmi(ll a, ll b)
{
ll ans = 1;
while(b)
{
if (b & 1)
ans = ans * a % mod;
b >>= 1;
a = a * a % mod;
}
return ans % mod;
}
int main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> n;
f[0] = 1;
s[0][0] = 1;
for (int i = 1; i <= n; i++)
{
f[i] = s[i-1][i-1&1];
s[i][i&1] = (s[i-2][i&1] + f[i]) % mod;
}
ll up = f[n], down = qmi(2, n);
cout << up * qmi(down, mod - 2) % mod << endl;
return 0;
}