高斯消元
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <iomanip>
using namespace std;
typedef long long ll;
const int N = 1e2 + 10;
const double eps = 1e-6;
int n;
double a[N][N];
void print()
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n + 1; j++)
cout << left << setw(8) << a[i][j] << " ";
cout << endl;
}
cout << endl;
}
int guess()
{
int r, c;
for (c = 1, r = 1; c <= n; c++)
{
int t = r;//本轮处理r ~ n行,1 ~ r-1 行已处理,不能再变化
for (int i = r; i <= n; i++)//找到当前列最大的数
{
if (fabs(a[i][c]) > fabs(a[t][c]))
t = i;
}
if (fabs(a[t][c]) < eps)//如果当前列全是0,则跳过看下一列,此时只有c++, r不变,最终以r <= n来判断解的情况
continue;
for (int i = c; i <= n + 1; i++)//将该列最大的数所在行换到第 r 行
swap(a[r][i], a[t][i]);
for (int i = n + 1; i >= c; i--)//将第 r 行的第一个非零元素变为 1
a[r][i] /= a[r][c];
for (int i = r + 1; i <= n; i++)//将 r+1 ~ n 行的第 c 列全部变为 0
{
if (fabs(a[i][c]) > eps)
for (int j = n + 1; j >= c; j--)
a[i][j] -= a[r][j] * a[i][c];
}
r++;
}
//print();
if (r <= n)//若系数矩阵每行都不是全 0,r应为n+1
{
//若r <= n, 则系数矩阵的 r ~ n 行全为 0,此时若最后一列有非 0 数,则无解
for (int i = r; i <= n; i++)
if (fabs(a[i][n+1]) > eps)
return 2;
return 1;
}
for (int i = n; i >= 1; i--)//若有唯一解则回带,将阶梯矩阵变为对角型矩阵
{
for (int j = i + 1; j <= n; j++)
a[i][n+1] -= a[j][n+1] * a[i][j];
}
return 0;
}
int main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> n;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n + 1; j++)
cin >> a[i][j];
int t = guess();
if (t == 0)
for (int i = 1; i <= n; i++)
{
if (fabs(a[i][n+1]) < eps)//防止输出"-0"
a[i][n+1] = 0;
printf("%.2lf\n", a[i][n+1]);
}
else if (t == 1)
puts("Infinite group solutions");
else
puts("No solution");
return 0;
}