CF EDU 113 D - Inconvenient Pairs
D - Inconvenient Pairs
思维
不方便的点对就是类似于,这种在同一行块或同一列块的两个点,他们的距离一定大于曼哈顿距离
其中红色为横向点对,紫色为纵向点对
所以可按 y 递增排序,找到每一个行块有多少个点,这一行块中的点对贡献为:\(\binom {cnt}2-\sum\binom {同一列的点的数量}2\)
注意当某个点的 y 就是行块分割的线时,它和任何点都不会构成 “横向” 的点对,所以可以一开始读入的时候记录下来,枚举到这个点就continue
求 “纵向” 点对数目同理
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <map>
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
const int N = 3e5 + 10;
int n, m, k;
int row[N], col[N];
map<int, int> xcnt, ycnt;
map<int, bool> xban, yban;
struct Point
{
int x, y;
}p[N];
bool cmp1(Point A, Point B)
{
if (A.x == B.x)
return A.y < B.y;
return A.x < B.x;
}
bool cmp2(Point A, Point B)
{
if (A.y == B.y)
return A.x < B.x;
return A.y < B.y;
}
void init()
{
xcnt.clear();
ycnt.clear();
xban.clear();
yban.clear();
}
int main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int T;
cin >> T;
while(T--)
{
cin >> n >> m >> k;
init();
for (int i = 1; i <= n; i++)
{
cin >> col[i];
xban[col[i]] = true;
}
for (int i = 1; i <= m; i++)
{
cin >> row[i];
yban[row[i]] = true;
}
for (int i = 1; i <= k; i++)
cin >> p[i].x >> p[i].y;
sort(p + 1, p + k + 1, cmp2);
int id = 2;
ll ans = 0;
for (int i = 1; i <= k; i++)
{
int x = p[i].x, y = p[i].y;
if (yban[y])
continue;
if (y > row[id])
{
ll add = 0, sum = 0;
for (auto t : xcnt)
{
sum += t.second;
add -= t.second * (t.second - 1) / 2;
}
add += sum * (sum - 1) / 2;
ans += add;
xcnt.clear();
while(y > row[id]) id++;
}
xcnt[x]++;
}
if (xcnt.size())
{
ll add = 0, sum = 0;
for (auto t : xcnt)
{
sum += t.second;
add -= t.second * (t.second - 1) / 2;
}
add += sum * (sum - 1) / 2;
ans += add;
xcnt.clear();
}
sort(p + 1, p + k + 1, cmp1);
id = 2;
for (int i = 1; i <= k; i++)
{
int x = p[i].x, y = p[i].y;
if (xban[x])
continue;
if (x > col[id])
{
ll add = 0, sum = 0;
for (auto t : ycnt)
{
sum += t.second;
add -= t.second * (t.second - 1) / 2;
}
add += sum * (sum - 1) / 2;
ans += add;
ycnt.clear();
while(x > col[id]) id++;
}
ycnt[y]++;
}
if (ycnt.size())
{
ll add = 0, sum = 0;
for (auto t : ycnt)
{
sum += t.second;
add -= t.second * (t.second - 1) / 2;
}
add += sum * (sum - 1) / 2;
ans += add;
ycnt.clear();
}
cout << ans << endl;
}
return 0;
}