51Nod 最小公倍数之和V3

这题公式真tm难推……为了这题费了我一个草稿本……

woc……在51Nod上码LaTeX码了两个多小时……

一开始码完了前半段,刚码完后半段突然被51Nod吃了,重新码完后半段之后前半段又被吃了,吓得我赶紧换Notepad++接着写……

有的细节懒得再码了,这么一坨LaTeX估计也够你们看了……

\begin{equation}
ans=\sum_{i=1}^n\sum_{j=1}^n [i,j]\\
=2\sum_{i=1}^n\sum_{j=1}^i [i,j]-\frac{n(n+1)}2\\
Let\space s(n)=\sum_{i=1}^n\sum_{j=1}^i [i,j],f(n)=\sum_{i=1}^n [i,n]\\
f(n)=\sum_{i=1}^n [i,n]\\
=\sum_{i=1}^n\frac{in}{(i,n)}\\
=n\sum_{i=1}^n\frac i{(i,n)}\\
=n\sum_{d|n}\sum_{i=1}^n[(i,n)=d]\frac i d\\
=n\sum_{d|n}\sum_{i=1}^{\frac n d}[(i,\frac n d)=1]i\\
=n\sum_{d|n}\sum_{i=1}^{d}[(i,d)=1]i\\
=n\sum_{d|n}\frac{\phi(d)d+[d=1]}2\\
=n\frac{1+\sum_{d|n}\phi(d)d}2\\
s(n)=\sum_{i=1}^n f(i)\\
=\frac{\sum_{i=1}^n i(1+\sum_{d|i}\phi(d)d)}2\\
=\frac{\sum_{i=1}^n i+\sum_{i=1}^n i\sum_{d|i}\phi(d)d}2\\
=\frac{\frac{n(n+1)}2+\sum_{i=1}^n i\sum_{d|i}\phi(d)d}2\\
=\frac{\frac{n(n+1)}2+\sum_{d=1}^n\phi(d)d\sum_{d|i}i}2\\
=\frac{\frac{n(n+1)}2+\sum_{d=1}^n\phi(d)d^2\sum_{i=1}^{\lfloor\frac n d\rfloor}i}2\\
=\frac{\frac{n(n+1)}2+\sum_{i=1}^n i\sum_{d=1}^{\lfloor\frac n i\rfloor}\phi(d)d^2}2\\
ans=2s(n)-\frac{n(n+1)}2\\
=\sum_{i=1}^n i\sum_{d=1}^{\lfloor\frac n i\rfloor}\phi(d)d^2\\
Let \space h(d)=\phi(d)d^2,g(n)=\sum_{d=1}^nh(d)\\
n=\sum_{d|n}\phi(d)\\
n^3=\sum_{d|n}\phi(d)n^2\\
=\sum_{d|n}\phi(d)d^2(\frac n d)^2\\
=\sum_{d|n}h(d)(\frac n d)^2\\
\sum_{i=1}^n i^3=\sum_{i=1}^n\sum_{d|i}h(d)(\frac i d)^2\\
=\sum_{d=1}^n h(d)\sum_{d|i}(\frac i d)^2\\
=\sum_{d=1}^n h(d)\sum_{i=1}^{\lfloor\frac n d \rfloor}i^2\\
=\sum_{i=1}^n i^2\sum_{d=1}^{\lfloor\frac n i\rfloor}h(d)\\
=\sum_{i=1}^n i^2 g(\lfloor\frac n i\rfloor)\\
g(n)=\sum_{i=1}^n i^3-\sum_{i=2}^ni^2 g(\lfloor\frac n i\rfloor)
\end{equation}
然后就是杜教筛的形式了,上杜教筛即可
\begin{equation}
\sum_{i=1}^n i^3=(\frac{n(n+1)}2)^2\\
\sum_{i=1}^n i^2=\frac{n(n+1)(2n+1)}6\\
ans=\sum_{i=1}^n i g(\lfloor\frac n i\rfloor)
\end{equation}
在外面套上一层分块不会影响复杂度,利用g的定义,筛出$\phi$之后即可算出较小的g,较大的g直接杜教筛算即可,总复杂度$O(n^{\frac 2 3})$

贴两份代码(虽然Python2的代码用Python2和Pypy2交都过不去......):

 1 '''
 2 h(i)=phi(d)*d^2
 3 g(i)=sum{h(j)|1<=j<=i}
 4 g(n)=sum{i^3|1<=i<=n}-sum{i^2*g(n/i)|2<=i<=n}
 5 线筛预处理一部分g,大一些的部分直接上杜教筛即可
 6 s_3(n)=s_1(n)^2,s_2(n)=n(n+1)(2n+1)/6
 7 '''
 8 p=1000000007
 9 table_size=8000000
10 def get_table(n):
11     global phi
12     notp=[False for i in xrange(n+1)]
13     prime=[]
14     cnt=0
15     phi[1]=1
16     for i in xrange(2,n+1):
17         if not notp[i]:
18             prime.append(i)
19             cnt+=1
20             phi[i]=i-1
21         for j in xrange(cnt):
22             if i*prime[j]>n:
23                 break
24             notp[i*prime[j]]=True
25             if i%prime[j]:
26                 phi[i*prime[j]]=phi[i]*(prime[j]-1)
27             else:
28                 phi[i*prime[j]]=phi[i]*prime[j]
29                 break
30     for i in xrange(2,n+1):
31         phi[i]=phi[i]*i*i%p
32         phi[i]=(phi[i]+phi[i-1])%p
33 def s1(n):
34     return (n*(n+1)>>1)%p
35 def s2(n):
36     return (n*(n+1)*((n<<1)+1)>>1)/3%p
37 def S(n):
38     if n<table_size:
39         return phi[n]
40     elif hashmap.has_key(n):
41         return hashmap[n]
42     ans=n*(n+1)/2
43     ans*=ans
44     ans%=p
45     i=2
46     while i<=n:
47         last=n/(n/i)
48         #print 'last=%d'%last
49         ans-=(s2(last)-s2(i-1))*S(n/i)%p
50         ans%=p
51         i=last+1
52     if ans<0:
53         ans+=p
54     hashmap[n]=ans
55     return ans
56 n=input()
57 hashmap=dict()
58 table_size=min(table_size,n)
59 phi=[0 for i in xrange(table_size+1)]
60 get_table(table_size)
61 #print 'table OK'
62 ans=0
63 i=1
64 while i<=n:
65     last=n/(n/i)
66     ans+=S(n/i)*(s1(last)-s1(i-1))%p
67     ans%=p
68     i=last+1
69 print ans
View Code
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #include<ext/pb_ds/assoc_container.hpp>
 5 #include<ext/pb_ds/hash_policy.hpp>
 6 #define s1(n) ((long long)(n)%p*(((n)+1)%p)%p*inv_2%p)
 7 #define s2(n) ((long long)(n)%p*(((n)+1)%p)%p*((((long long)(n)%p)<<1)%p+1)%p*inv_6%p)
 8 using namespace std;
 9 using namespace __gnu_pbds;
10 const int table_size=10000010,maxn=table_size+10,p=1000000007,inv_2=500000004,inv_6=166666668;
11 void get_table(int);
12 int S(long long);
13 bool notp[maxn]={false};
14 int prime[maxn]={0},phi[maxn]={0};
15 gp_hash_table<long long,int>hashmap;
16 long long n;
17 int main(){
18     scanf("%lld",&n);
19     get_table(min((long long)table_size,n));
20     int ans=0;
21     for(long long i=1,last;i<=n;i=last+1){
22         last=n/(n/i);
23         ans+=S(n/i)*((s1(last)-s1(i-1))%p)%p;
24         ans%=p;
25     }
26     if(ans<0)ans+=p;
27     printf("%d",ans);
28     return 0;
29 }
30 void get_table(int n){
31     phi[1]=1;
32     for(int i=2;i<=n;i++){
33         if(!notp[i]){
34             prime[++prime[0]]=i;
35             phi[i]=i-1;
36         }
37         for(int j=1;j<=prime[0]&&i*prime[j]<=n;j++){
38             notp[i*prime[j]]=true;
39             if(i%prime[j])phi[i*prime[j]]=phi[i]*(prime[j]-1);
40             else{
41                 phi[i*prime[j]]=phi[i]*prime[j];
42                 break;
43             }
44         }
45     }
46     for(int i=2;i<=n;i++){
47         phi[i]=(long long)phi[i]*i%p*i%p;
48         phi[i]=(phi[i]+phi[i-1])%p;
49     }
50 }
51 int S(long long n){
52     if(n<=table_size)return phi[n];
53     else if(hashmap.find(n)!=hashmap.end())return hashmap[n];
54     int ans=s1(n)*s1(n)%p;
55     for(long long i=2,last;i<=n;i=last+1){
56         last=n/(n/i);
57         ans-=S(n/i)*((s2(last)-s2(i-1))%p)%p;
58         ans%=p;
59     }
60     if(ans<0)ans+=p;
61     return hashmap[n]=ans;
62 }
63 /*
64 h(i)=phi(d)*d^2
65 g(i)=sum{h(j)|1<=j<=i}
66 g(n)=sum{i^3|1<=i<=n}-sum{i^2*g(n/i)|2<=i<=n}
67 ans=sum{i*g(n/i)|1<=i<=n}
68 线筛预处理一部分g,大一些的部分直接上杜教筛即可
69 s_3(n)=s_1(n)^2,s_2(n)=n(n+1)(2n+1)/6
70 */
View Code

 

posted @ 2017-01-11 09:36  AntiLeaf  阅读(676)  评论(1编辑  收藏  举报