Processing math: 100%

dp杂题(根据个人进度选更)

----19.7.30 今天又开了一个新专题,dp杂题,我依旧按照之前一样,这一个专题更在一起,根据个人进度选更题目;

dp就是动态规划,本人认为,动态规划的核心就是dp状态的设立以及dp转移方程的推导,这也是训练的重中之重,所以代码不那么重要,重要的就是dp的思想;

T1:

A. 消失之物

题目描述

ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

这道题乍一看以为就是一个裸的背包,但是(本人太弱了)我以上来先想到的是裸的0/1背包然后就想跑n0/1背包,但是显然复杂度会爆炸,所以要考虑别的方法,但是还是逃不掉的dp,重点就在状态的转移,这个转移其实可以在之前的0/1背包的基础上进行转移,那么我们可以设f[maxn][2],也就是开一维半的数组,设状态为f[j][1]表示背包容量为j时的方案数,因为题目恶心了我们就是要输出一个矩阵,那么我们就需要再循环i表示当我们去掉i时f[j][1]就是背包容量为j时的方案数,那么就可以列出状态转移方程:(这里的0/1表示能否可以解决!)

f[j][0]+=f[jv[i]]

f[j][1]=f[j][0]+f[jv[i]][1]jv[i]>0

f[j][1]=f[j][0](jv[i]<=0)

然后就结束了,一定要记得多多取模(他让输出最低的一位,所以不那么恶心!),这道题没什么细节,就不站代码了,评论区留给你们!

 UPD:这道题skyh的打法刷新了我的dp观,我是真的震惊

天黄的这道题使用分治带dp打的,很新颖,不愧是dalao(orz),那么我也稍说一下skyh的思路:

(after10mins...)其实和我的思路差不多,就是分治了一下,qwq

 

复制代码
 1 #include<iostream>
 2 #include<cstdio>
 3 using namespace std;
 4 const int N=2010;
 5 int n,m,w[N];
 6 short dp[15][N];
 7 void solve(int dep,int l,int r){
 8     if(l==r){
 9         for(int i=1;i<=m;++i) printf("%d",dp[dep-1][i]);
10         puts("");
11         return ;
12     }
13     int mid=l+r>>1;
14     for(int i=0;i<=m;++i) dp[dep][i]=dp[dep-1][i];
15     for(int i=mid+1;i<=r;++i) for(int j=m;j>=w[i];--j) (dp[dep][j]+=dp[dep][j-w[i]])%=10;
16     solve(dep+1,l,mid);
17     for(int i=0;i<=m;++i) dp[dep][i]=dp[dep-1][i];
18     for(int i=l;i<=mid;++i) for(int j=m;j>=w[i];--j) (dp[dep][j]+=dp[dep][j-w[i]])%=10;
19     solve(dep+1,mid+1,r);
20 }
21 int main()
22 {
23     scanf("%d%d",&n,&m);
24     for(int i=1;i<=n;++i) scanf("%d",&w[i]);
25     dp[0][0]=1; solve(1,1,n);
26     return 0;
27 }
skyh
复制代码

//copyright by skyh

//copy from skyh  orz

 

B. 方伯伯的玉米田

内存限制:128 MiB 时间限制:6000 ms 标准输入输出
 
 

题目描述

方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美。
这排玉米一共有N株,它们的高度参差不齐。
方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列。
方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作。拔玉米则可以随意选择一个集合的玉米拔掉。
问能最多剩多少株玉米,来构成一排美丽的玉米。

输入格式

第1行包含2个整数n,K,分别表示这排玉米的数目以及最多可进行多少次操作。
第2行包含n个整数,第i个数表示这排玉米,从左到右第i株玉米的高度ai。

输出格式

输出1个整数,最多剩下的玉米数。

这是学长讲过的一道例题,是数据结构优化dp,而且这道题需要证明一个引理;

引理:所有操作的右端点一定是n(最右侧)的那个点。

证明:如果将一个区间内的权值都加上一个数,只会出现两种情况:

  1.区间的左侧:

    之前比区间内的数小的在操作之后还是比他小;

    之前比区间内的数大的在操作之后没有他大(比他小!);

    之前比区间内的数大的在操作之后还是比他大;

  所以区间左侧不会降低ans,还可能增加ans

  2.区间的右侧:

    之前比区间内的数小在操作之后还是比他小;

    之前比区间内数大的,现在不一定比他大;

    之前比区间内数大的,现在还是比他大;

 所以区间右侧不会升高ans,还可能降低ans;

所以要保证答案最优,就要有区间右侧最小,所以就有所有的操作都以n为有区间的端点;

证明完毕;

接着回到题解,这里有了上面的引理,我们就能推出dp的状态转移方程;

f[i][j]表示以i为结尾,共被拔高了j次的ans,即以i为结尾,共被j个区间覆盖;

那么,我们根据定义可以推出状态转移方程:

  f[i][j]=maxf[k][l]+1(1<=k<=i,1<=l<=j)且要合法才能转移;

那么这一看如果暴力求解的话复杂度爆表,所以这个可以使用二维树状数组进行优化,然后就是O(nm)的复杂度;

代码实现也很简单:

 

复制代码
 1 #include<iostream>
 2 #include<cstring>
 3 #include<cmath>
 4 #include<cstdlib>
 5 #include<cstdio>
 6 using namespace std;
 7 #define re register
 8 int a[10005],c[10005][505],n,m,maxa,ans,sum,res;
 9 int lowbit(int x){return x&(-x);}
10 void change(int x,int y,int z)
11 {
12     int yy=y;
13     while(x<=maxa+m)
14     {
15         y=yy;
16         while(y<=m+1)
17         {
18             c[x][y]=max(c[x][y],z);
19             y+=lowbit(y);
20         }
21         x+=lowbit(x);
22     }
23 }
24 int getsum(int x,int y)
25 {
26     int yy=y,sum=0;
27     while(x>0)
28     {
29         y=yy;
30         while(y>0)
31         {
32             sum=max(sum,c[x][y]);
33             y-=lowbit(y);
34         }
35         x-=lowbit(x);
36     }
37     return sum;
38 }
39 int main()
40 {
41     //freopen("simple.txt","r",stdin);
42     scanf("%d%d",&n,&m);
43     for(int i=1;i<=n;i++)
44     {
45         scanf("%d",&a[i]);
46         maxa=max(maxa,a[i]);
47     }
48     for(int i=1;i<=n;i++)
49     {
50         for(int j=m;j>=0;j--)
51         {
52             res=getsum(a[i]+j,j+1)+1;
53             change(a[i]+j,j+1,res);
54             ans=max(ans,res);
55         }
56     }
57     printf("%d\n",ans);
58     return 0;
59 }
玉米田
复制代码

 

C. 拦截导弹

内存限制:512 MiB 时间限制:1500 ms 标准输入输出
 

题目描述

某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度、并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高于前一发的高度,其拦截的导弹的飞行速度也不能大于前一发。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

在不能拦截所有的导弹的情况下,我们当然要选择使国家损失最小、也就是拦截导弹的数量最多的方案。但是拦截导弹数量的最多的方案有可能有多个,如果有多个最优方案,那么我们会随机选取一个作为最终的拦截导弹行动蓝图。

我方间谍已经获取了所有敌军导弹的高度和速度,你的任务是计算出在执行上述决策时,每枚导弹被拦截掉的概率。

输入格式

第一行包含一个正整数

,表示敌军导弹数量;

下面 行按顺序给出了敌军所有导弹信息:

第i+1行包含2个正整数

,分别表示第 枚导弹的高度和速度。

输出格式

输出包含两行。

第一行为一个正整数,表示最多能拦截掉的导弹数量;

第二行包含n个0到1之间的实数,第i个数字表示第i枚导弹被拦截掉的概率(你可以保留任意多位有效数字)。

样例

样例输入

4
3 30
4 40
6 60
3 30

样例输出

2
0.33333 0.33333 0.33333 1.00000

数据范围与提示

对于100%的数据,

这个spj其实是假的,并没有部分分,但是这道题确实是一道好题,其实之前做过拦截导弹的简单版,就是线性dp,所以这还是用线性dp,显然是不行的,因为我以为是spj已经WA0好几次了,因为这道题有三个限制条件,要同时满足三个限制条件,不就是cdq分治吗,然后就把统计答案的dp扔到cdq的过程中,然后,就切了。就这样切了,当然不是,反正我不是1A的,记得开double!

 

复制代码
  1 #include<algorithm>
  2 #include<iostream>
  3 #include<cstring>
  4 #include<cstdio>
  5 #include<cmath>
  6 #include<vector>
  7 using namespace std;
  8 const int maxn=100000;
  9 inline int read()
 10 {
 11     int x=0,f=1;char cc;cc=getchar();
 12     while(cc>'9'||cc<'0'){if(cc=='-')f=-1;cc=getchar();}
 13     while(cc>='0'&&cc<='9'){x=(x<<3)+(x<<1)+(cc^48);cc=getchar();}
 14     return x;
 15 }
 16 struct tree
 17 {
 18     int f;double w;
 19     tree(){f=0,w=0;}
 20 }t[maxn];
 21 int n;
 22 int st[maxn],top=0,th,tv;
 23 inline int lowbit(int x){return x&(-x);}
 24 inline void add(int p,int f,double w)
 25 {
 26     while(p<n)
 27     {
 28         if(t[p].f<f)
 29         {
 30             if(t[p].f==0)st[++top]=p;
 31             t[p].f=f;t[p].w=w;
 32         }
 33         else if(t[p].f==f)t[p].w+=w;
 34         p+=lowbit(p);
 35     }
 36     return;
 37 }
 38 tree ask(int p)
 39 {
 40     tree res;
 41     while(p)
 42     {
 43         if(t[p].f>res.f) res=t[p];
 44         else if(t[p].f==res.f) res.w+=t[p].w;
 45         p-=lowbit(p);
 46     }
 47     return res;
 48 }
 49 struct Dan
 50 {
 51     int h,v,f[2],id,t;
 52     double g[2];
 53 }a[maxn],q[maxn];
 54 int wh[maxn],wv[maxn],id[maxn];
 55 int rk[maxn];
 56 inline bool cmp(int x,int y){return a[x].h<a[y].h||(a[x].h==a[y].h&&a[x].id<a[y].id);}
 57 int cmpid(Dan a,Dan b){return a.id<b.id;}
 58 int cnt=0;
 59 void cdq(int l,int r,int mode)
 60 {
 61     if(l==r)
 62     {
 63         if(a[l].f[mode]<1){a[l].f[mode]=1;a[l].g[mode]=1;}
 64         return;
 65     }
 66     int mid=(l+r)>>1;
 67     memcpy(q+l,a+l,sizeof(Dan)*(r-l+1));
 68     int q1=l,q2=mid+1;
 69     for(int i=l;i<=r;i++)
 70         if(q[i].t<=mid)a[q1++]=q[i];     
 71         else a[q2++]=q[i];
 72     cdq(l,mid,mode);
 73     q1=l;
 74     for(int i=mid+1;i<=r;i++)
 75     {
 76         while(q1<=mid && a[q1].id<a[i].id) 
 77             add(a[q1].v,a[q1].f[mode],a[q1].g[mode]),q1++;
 78         tree res=ask(a[i].v);
 79         if(!res.f)continue;
 80         if(res.f+1>a[i].f[mode])
 81         {
 82             a[i].f[mode]=res.f+1;
 83             a[i].g[mode]=res.w;
 84         }
 85         else if(res.f+1==a[i].f[mode]) a[i].g[mode]+=res.w;
 86     }
 87     while(top){t[st[top]].w=0;t[st[top--]].f=0;}
 88     cdq(mid+1,r,mode);
 89     merge(a+l,a+mid+1,a+mid+1,a+r+1,q+l,cmpid);
 90     memcpy(a+l,q+l,sizeof(Dan)*(r-l+1));
 91     return;
 92 }
 93 int main()
 94 {
 95     //freopen("cnm.txt","r",stdin);
 96     n=read();
 97     for(int i=1;i<=n;i++)
 98     {
 99         a[i].h=read();a[i].v=read();a[i].id=i;
100         wh[i]=a[i].h;wv[i]=a[i].v;
101         rk[i]=i;
102     }
103     sort(wh+1,wh+n+1);
104     sort(wv+1,wv+n+1);
105     th=unique(wh+1,wh+n+1)-wh-1;
106     tv=unique(wv+1,wv+n+1)-wv-1;
107     for(int i=1;i<=n;i++)
108     {
109         a[i].h=th-(lower_bound(wh+1,wh+th+1,a[i].h)-wh)+1;
110         a[i].v=tv-(lower_bound(wv+1,wv+tv+1,a[i].v)-wv)+1;
111     }
112     sort(rk+1,rk+n+1,cmp);
113     for(int i=1;i<=n;i++)a[rk[i]].t=i;
114     cdq(1,n,0);
115     for(int i=1;i<=n;i++)
116     {
117         a[i].h=th-a[i].h+1;
118         a[i].v=tv-a[i].v+1;
119         a[i].id=n-a[i].id+1;
120         a[i].t=n-a[i].t+1;
121     }
122     reverse(a+1,a+n+1);
123     cdq(1,n,1);
124     reverse(a+1,a+n+1);
125     double smm=0;
126     int ans=0;
127     for(register int i=1;i<=n;i++)
128         ans=max(ans,a[i].f[0]+a[i].f[1]-1);
129     printf("%d\n",ans);
130     for(int i=1;i<=n;i++)
131         if(a[i].f[0]==ans)
132             smm+=a[i].g[0]*a[i].g[1]*1ll;
133     for(int i=1;i<=n;i++)
134     {
135         double res=a[i].g[0]*a[i].g[1];
136         if(a[i].f[0]+a[i].f[1]-1!=ans)printf("%.5lf ",0.0);
137         else printf("%.5f ",res/smm);
138     }
139     return 0;
140 }
SDOI拦截导弹
复制代码

 

 

 

///////这个专题的坑还很大,未完待续.........////////

posted @   hzoi_lsc  阅读(221)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示