在MapReduce中使用Avro

个人认为在MapReduce中使用Avro可以提升数据的处理性能,主要是以下几点:

  • 向Job提供数据文件时可以使用Avro序列化过的二进制数据文件
  • 在数据解析方面速度比较快
  • 排序功能

Avro官网也提供了一个ColorCount这样的一个案例,演示使用Avro序列化过的二进制数据文件作为MapReduce的Job的输入数据,并且完成计算之后,输出结果也是Avro序列化后的数据文件,下面是这个案例源码及相关步骤:

   1. 项目的pom文件:

<dependencies>
        <dependency>
            <groupId>org.apache.avro</groupId>
            <artifactId>avro</artifactId>
            <version>1.7.7</version>
        </dependency>
        <dependency>
            <groupId>org.apache.avro</groupId>
            <artifactId>avro-mapred</artifactId>
            <version>1.7.7</version>
            <classifier>hadoop2</classifier>   //这是maven的分类器,用来进一步来确定jar包的类别的
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.9.2</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-jar-plugin</artifactId>
                <configuration>
                    <archive>
                        <manifest>
                            <mainClass>com.zpark.demo.avro.mapreduce.MapReduceColorCount</mainClass>
                        </manifest>
                    </archive>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
        </plugins>
    </build>

注意事项:

在引入依赖 avro-mapred 时一定要设置分类器属性
<classifier>hadoop2</classifier>,并且在使用不熟悉的依赖时,一定看下它的pom文件内容,看里面是不是定义了分类器。


2. Mapper和Reducer代码
public class MapReduceColorCount extends Configured implements Tool {

    public static class ColorCountMapper extends
            Mapper<AvroKey<GenericRecord>, NullWritable, Text, IntWritable> {

        @Override
        public void map(AvroKey<GenericRecord> key, NullWritable value, Context context)
                throws IOException, InterruptedException {

            String color = (String)key.datum().get("favorite_color");
            if (color == null) {
                color = "none";
            }
            context.write(new Text(color), new IntWritable(1));
        }
    }

    public static class ColorCountReducer extends
            Reducer<Text, IntWritable, AvroKey<CharSequence>, AvroValue<Integer>> {

        @Override
        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context) throws IOException, InterruptedException {

            int sum = 0;
            for (IntWritable value : values) {
                sum += value.get();
            }
            context.write(new AvroKey<CharSequence>(key.toString()), new AvroValue<Integer>(sum));
        }
    }

    public int run(String[] args) throws Exception {
        if (args.length != 2) {
            System.err.println("Usage: MapReduceColorCount <input path> <output path>");
            return -1;
        }

        //Job job = new Job(getConf());

        Job job = Job.getInstance(getConf(), "word count");
        job.setJarByClass(MapReduceColorCount.class);
        job.setJobName("Color Count");

        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        job.setInputFormatClass(AvroKeyInputFormat.class);
        job.setMapperClass(ColorCountMapper.class);
        AvroJob.setInputKeySchema(job, ColorCountSchema.schema);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        job.setOutputFormatClass(AvroKeyValueOutputFormat.class);
        job.setReducerClass(ColorCountReducer.class);
        AvroJob.setOutputKeySchema(job, Schema.create(Schema.Type.STRING));
        AvroJob.setOutputValueSchema(job, Schema.create(Schema.Type.INT));

        return (job.waitForCompletion(true) ? 0 : 1);
    }

    public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new MapReduceColorCount(), args);
        System.exit(res);
    }
}

 

3. Avro Schema

通过下面这个类来产成Avro序列时的Schema对象

public class ColorCountSchema {

    public static Schema schema = new Schema.Parser().parse(
            new StringBuilder()
                    .append("{\"namespace\": \"com.zpark.demo.avro.mapreduce\",")
                        .append("\"type\": \"record\",")
                        .append("\"name\": \"User\",")
                        .append("\"fields\": [")
                                        .append("{\"name\": \"name\", \"type\": \"string\"},")
                                        .append("{\"name\": \"favorite_number\",  \"type\": [\"int\", \"null\"]},")
                                        .append("{\"name\": \"favorite_color\", \"type\": [\"string\", \"null\"]}")
                                    .append("]")
                    .append("}").toString()
    );
}

下面是对应的user.avsc文件的内容

{"namespace": "com.zpark.demo.avro.mapreduce",
 "type": "record",
 "name": "User",
 "fields": [
     {"name": "name", "type": "string"},
     {"name": "favorite_number",  "type": ["int", "null"]},
     {"name": "favorite_color", "type": ["string", "null"]}
 ]
}

 

4. 打包上传Jar包到Hadoop环境下运行

  一定要注意,同时需要把依赖jar包 avro-mapred-1.7.7-hadoop2.jar 上传到 $HADOOP_HOME/share/hadoop/mapreduce目录下,并且一定上传分类器版本对应haddop2的jar,否则会报下面的错:

 https://stackoverflow.com/questions/29448222/found-interface-org-apache-hadoop-mapreduce-taskattemptcontext

5.查看计算结果
执行后会输出part-r-00000.avro这样的计算结果文件,可以通过 java -jar avro-tools-1.9.1.jar tojson part-r-00000.avro来查看,此外通过java -jar avro-tools-1.9.1.jar help可以查看avro-tools的详细命令列表
Version 1.9.1
 of Apache Avro
Copyright 2010-2015 The Apache Software Foundation

This product includes software developed at
The Apache Software Foundation (https://www.apache.org/).
----------------
Available tools:
    canonical  Converts an Avro Schema to its canonical form
          cat  Extracts samples from files
      compile  Generates Java code for the given schema.
       concat  Concatenates avro files without re-compressing.
  fingerprint  Returns the fingerprint for the schemas.
   fragtojson  Renders a binary-encoded Avro datum as JSON.
     fromjson  Reads JSON records and writes an Avro data file.
     fromtext  Imports a text file into an avro data file.
      getmeta  Prints out the metadata of an Avro data file.
    getschema  Prints out schema of an Avro data file.
          idl  Generates a JSON schema from an Avro IDL file
 idl2schemata  Extract JSON schemata of the types from an Avro IDL file
       induce  Induce schema/protocol from Java class/interface via reflection.
   jsontofrag  Renders a JSON-encoded Avro datum as binary.
       random  Creates a file with randomly generated instances of a schema.
      recodec  Alters the codec of a data file.
       repair  Recovers data from a corrupt Avro Data file
  rpcprotocol  Output the protocol of a RPC service
   rpcreceive  Opens an RPC Server and listens for one message.
      rpcsend  Sends a single RPC message.
       tether  Run a tethered mapreduce job.
       tojson  Dumps an Avro data file as JSON, record per line or pretty.
       totext  Converts an Avro data file to a text file.
     totrevni  Converts an Avro data file to a Trevni file.
  trevni_meta  Dumps a Trevni file's metadata as JSON.
trevni_random  Create a Trevni file filled with random instances of a schema.
trevni_tojson  Dumps a Trevni file as JSON.

 

 

 

posted @ 2020-02-07 01:24  杭州胡欣  阅读(517)  评论(0编辑  收藏  举报