Hdu 3487 play the chain 题解(fhq_treap)

3487: Play with Chain

Time Limit: 10 Sec Memory Limit: 256 MB

Description

瑶瑶很喜欢玩项链,她有一根项链上面有很多宝石,宝石从1到n编号。
首先,项链上的宝石的编号组成一个序列:1,2,3,...,n。
她喜欢两种操作:
1.CUT a b c:他会先将a至b号宝石切下来,然后接到c号宝石后面,组成一个新的项链。
举个例子,如果n=8,那么这个项链上的宝石编号依次为:1 2 3 4 5 6 7 8;'CUT 3 5 4',首先我们把3到5号宝石切下
项链变成了:1 2 6 7 8;然后接到4号宝石后面,此时的4号宝石为7,所以此时的项链变成了:1 2 6 7 3 4 5 8.
2.FLIP a b:像第一个操作一样我们先将a至b号宝石切下来,然后将其旋转180°,变成与原来相反的链,在插入到项链的相 同位置中。
举个例子,取操作1中的链:1 2 3 4 5 6 7 8,执行FLIP 2 6操作,则项链将变成:1 6 5 4 3 2 7 8.
他想知道经过m个操作之后项链会变成怎样。

Input

对于每一个数据,第一行会有两个整数:\(n,m(1\leq n,m\leq 300000)\) \(n\)代表宝石的个数,\(m\)代表操作的个数。
接下来有\(m\)行 有两个操作:
CUT A B C //代表CUT操作,\(1\leq A\leq B\leq N, 0\leq C\leq N-(B-A+1)\).
FLIP A B //代表FLIP操作,\(1\leq A\leq B\leq N\).
输出的结尾将会有两个负数,他们不能当做操作.

Output

对于每一个数据,你需要输出\(n\)个整数,任两个数字间用一个空格分开,代表最终得到的项链的从1到\(n\)的宝石的序列号。

Sample Input

8 2
CUT 3 5 4
FLIP 2 6
-1 -1

Sample Output

1 4 3 7 6 2 5 8

HINT


题意:

\(n\)个元素的序列,\(m\)个操作,支持剪切区间和翻转区间两种操作
原序列为1 2 3 4 5 6 7 8
cut操作,先将3~5号元素剪切下来
序列变为1 2 6 7 8
此时四号元素为7,再将剪切下来的元素放在7后面
序列变为1 2 6 7 3 4 5 8
flip操作,翻转2~6号元素
得1 4 3 7 6 2 5 8


题解

分析题意,题目让我们维护一个序列,支持两种操作,可以考虑杨fhq_treap来写
考虑到cut操作,其实就是先将a~b分离出来再插入到c号元素之后即可,直接split和merge即可完成此操作
至于flip操作,分离出a~b区间,再打Lazy标记即可
详见代码

#include<bits/stdc++.h>
#define F(i,j,n) for(register int i=j;i<=n;i++)
#define INF 0x3f3f3f3f
#define ll long long
#define mem(i,j) memset(i,j,sizeof(i))
using namespace std;
int n,m,ansnum=0;
inline int read(){
	int datta=0;char chchc=getchar();bool okoko=0;
	while(chchc<'0'||chchc>'9'){if(chchc=='-')okoko=1;chchc=getchar();}
	while(chchc>='0'&&chchc<='9'){datta=datta*10+chchc-'0';chchc=getchar();}
	return okoko?-datta:datta;
}
class Fhq_Treap{
	private:
	public:
	int tot,son[1200010][2],key[1200010],val[1200010],sz[1200010];
	inline void updata(int u){
		sz[u]=sz[son[u][0]]+sz[son[u][1]]+1;
	}
	inline void build(int l,int r,int lst){
		if(r<l)
			return ;
		if(l==r){
			son[lst][lst<l]=l;
			key[l]=rand();
			val[l]=l;
			sz[l]=1;
			return ;
		}
		int mid=(l+r)>>1;
		son[lst][lst<mid]=mid;
		key[mid]=rand();
		val[mid]=mid;
		build(l,mid-1,mid);
		build(mid+1,r,mid);
		updata(mid);
	}
	inline void make_rev_tag(int u){
		rev[u]^=1;
		swap(son[u][0],son[u][1]);
	}
	inline void pushdown(int u){
		if(rev[u]){
			if(son[u][0])
				make_rev_tag(son[u][0]);
			if(son[u][1])
				make_rev_tag(son[u][1]);
			rev[u]=0;
		}
	}
	inline pair<int,int>split(int u,int k){
		if(!k)
			return make_pair(0,u);
		if(k==sz[u])
			return make_pair(u,0);
		pushdown(u);
		if(k<=sz[son[u][0]]){
			pair<int,int>res=split(son[u][0],k);
			son[u][0]=res.second;
			updata(u);
			return make_pair(res.first,u);
		}else{
			pair<int,int>res=split(son[u][1],k-sz[son[u][0]]-1);
			son[u][1]=res.first;
			updata(u);
			return make_pair(u,res.second);
		}
	}
	inline int merge(int x,int y){
		if(!x||!y)
			return x+y;
		pushdown(x);
		pushdown(y);
		if(key[x]<key[y]){
			son[x][1]=merge(son[x][1],y);
			updata(x);
			return x;
		}else{
			son[y][0]=merge(x,son[y][0]);
			updata(y);
			return y;
		}
	}
	int rt;
	bool rev[1200010];
	inline void prepare(){
		tot=n;
		rt=(1+n)>>1;
		build(1,n,0);
	}
	inline void rever(int l,int r){
		pair<int,int>spl1=split(rt,r);
		pair<int,int>spl2=split(spl1.first,l-1);//分离a~b区间
		make_rev_tag(spl2.second);//打Lazy标记
		rt=merge(merge(spl2.first,spl2.second),spl1.second);
	}
	inline void print_ans(int u){
		if(!u)
			return ;
		pushdown(u);
		print_ans(son[u][0]);
		if(ansnum==n-1)
			printf("%d",val[u]);
		else
			printf("%d ",val[u]);//避免PE
		ansnum++;
		print_ans(son[u][1]);
	}
}F;
int main(){
	n=read();m=read();
	while(n!=-1&&m!=-1){
		mem(F.son,0);mem(F.key,0);mem(F.val,0);mem(F.sz,0);mem(F.rev,0);
		F.rt=F.tot=ansnum=0;
		F.prepare();//建初始树
		F(i,1,m){
			char ch=getchar();
			while(ch!='C'&&ch!='F')
				ch=getchar();
			int a=read(),b=read(),c;
			if(ch=='C'){
				c=read();
				pair<int,int>spl1=F.split(F.rt,b);
				pair<int,int>spl2=F.split(spl1.first,a-1);
				F.rt=F.merge(spl2.first,spl1.second);//上面三行分离出a~b区间
				pair<int,int>spl3=F.split(F.rt,c);//分离c区间
				F.rt=F.merge(F.merge(spl3.first,spl2.second),spl3.second);//重新组合
			}else{
				F.rever(a,b);//翻转操作
			}
		}
		F.print_ans(F.rt);//按前序遍历输出答案
		printf("\n");
		n=read();m=read();
	}
	return 0;
}

posted @ 2018-12-21 23:45  hzf29721  阅读(237)  评论(1编辑  收藏  举报