2020-2021-1 20209301《Linux内核原理与分析》第九周作业

这个作业属于哪个课程 <2020-2021-1Linux内核原理与分析)>
这个作业要求在哪里 <2020-2021-1Linux内核原理与分析第九周作业>
这个作业的目标 <理解进程调度时机跟踪分析进程调度与进程切换的过程>
作业正文 https://www.cnblogs.com/hyuxin/p/14092528.html

实验八

实验要求

1.理解Linux系统中进程调度的时机,可以在内核代码中搜索schedule()函数,看都是哪里调用了schedule(),判断我们课程内容中的总结是否准确;
2.使用gdb跟踪分析一个schedule()函数 ,验证您对Linux系统进程调度与进程切换过程的理解;推荐在实验楼Linux虚拟机环境下完成实验。
3.特别关注并仔细分析switch_to中的汇编代码,理解进程上下文的切换机制,以及与中断上下文切换的关系;

实验过程

1.重新克隆一个menu,然后重新编译内核。

2.另打开一个窗口进行gdb远程调试,配置gdb远程调试并设置断点。



关键代码分析

context_switch

static inline void context_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
{
    arch_start_context_switch(prev);

    if (unlikely(!mm)) {    //如果被切换进来的进程的mm为空切换,内核线程mm为空
        next->active_mm = oldmm;  //将共享切换出去的进程的active_mm
        atomic_inc(&oldmm->mm_count);  //有一个进程共享,所有引用计数加一
        enter_lazy_tlb(oldmm, next);  //将per cpu变量cpu_tlbstate状态设为LAZY
    } else   //普通mm不为空,则调用switch_mm切换地址空间
        switch_mm(oldmm, mm, next);
    //这里切换寄存器状态和栈 
    switch_to(prev, next, prev);

switch_to

#define switch_to(prev, next, last)
do {
    /*
     * Context-switching clobbers all registers, so we clobber
     * them explicitly, via unused output variables.
     * (EAX and EBP is not listed because EBP is saved/restored
     * explicitly for wchan access and EAX is the return value of
     * __switch_to())
     */
    unsigned long ebx, ecx, edx, esi, edi;

    asm volatile(
             "pushfl\n\t"  //保存当前进程flags
             "pushl %%ebp\n\t"  //当前进程堆栈基址压栈
             "movl %%esp,%[prev_sp]\n\t"  //保存ESP,将当前堆栈栈顶保存起来
             "movl %[next_sp],%%esp\n\t"  //更新ESP,将下一栈顶保存到ESP中
                     // 完成内核堆栈的切换
             "movl $1f,%[prev_ip]\n\t"    //保存当前进程的EIP
             "pushl %[next_ip]\n\t"       //将next进程起点压入堆栈,即next进程的栈顶为起点
             __switch_canary              //next_ip一般为$1f,对于新创建的子进程是ret_from_fork      
             "jmp __switch_to\n"    //prve进程中,设置next进程堆栈,jmp与call不同,是通过寄存器传递参数(call通过堆栈),所以ret时弹出的是之前压入栈顶的next进程起点
             //完成EIP的切换
             "1:\t"            //next进程开始执行       
             "popl %%ebp\n\t"  //restore EBP
             "popfl\n"         //restore flags

             //输出量
             : [prev_sp] "=m" (prev->thread.sp),   //保存当前进程的esp
               [prev_ip] "=m" (prev->thread.ip),     //保存当前进仓的eip
               "=a" (last),

               //要破坏的寄存器
               "=b" (ebx), "=c" (ecx), "=d" (edx),
               "=S" (esi), "=D" (edi)

               __switch_canary_oparam

              //输入量
             : [next_sp]  "m" (next->thread.sp),   //next进程的内核堆栈栈顶地址,即esp
               [next_ip]  "m" (next->thread.ip),     //next进程的eip

               // regparm parameters for __switch_to(): 
               [prev]     "a" (prev),
               [next]     "d" (next)

               __switch_canary_iparam

             : //重新加载段寄存器
            "memory");
} while (0)

总结

1.schedule函数:

Linux内核通过schedule函数实现进程调度,schedule函数在运行队列中找到一个进程,把CPU分配给它。所以调用schedule函数的时候就是进程调度的时机。

2.进程调度时机:

用户进程通过特定的系统调用主动让出CPU。
中断处理程序在内核返回用户态时进行调度。
内核线程主动调用schedule函数让出CPU。
中断处理程序主动调用schedule函数让出CPU,涵盖第一和第二种情况。

3.进程切换

4.Linux系统的运行过程

Linux系统的一般执行过程:正在运行的用户态进程X切换到用户态进程Y的过程:
1.正在运行的用户态进程X;
2.发生中断(包括异常,系统调用等),硬件完成以下动作:
save cs:eip/esp/eflags:当前CPU上下文压入用户态进程X的内核堆栈;
load cs:eip(entry of a specific ISR) and ss:esp(point to kernel stack)
3.SAVE_ALL,保存现场
4.中断处理过程中或中断返回前调用了schedule(),其中的switch_to做了关键的进程上下文切换;
5.标号1,之后开始运行用户态进程Y(这里Y曾经通过以上步骤被切换出去过因此可以从标号1继续执行);
6.restore_all,恢复现场;
7.iret-pop cs:eip/ss:esp/eflags,从Y进程的内核堆栈中弹出(2)中硬件完成的压栈内容;
8.继续运行用户态进程Y。

posted @ 2020-12-06 13:37  20209301黄宇欣  阅读(102)  评论(0编辑  收藏  举报