Hive常用函数大全(窗口函数、分析函数)

1、相关函数

1.1 窗口函数

  • FIRST_VALUE:取分组内排序后,截止到当前行,第一个值
  • LAST_VALUE: 取分组内排序后,截止到当前行,最后一个值
  • LEAD(col,n,DEFAULT) :用于统计窗口内往后第n行值
    • 第一个参数为列名,
    • 第二个参数为往下第n行(可选,默认为1),
    • 第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)
  • LAG(col,n,DEFAULT) :用于统计窗口内往前第n行值
    • 第一个参数为列名,
    • 第二个参数为往上第n行(可选,默认为1),
    • 第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

1.2 OVER从句

1、使用标准的聚合函数COUNT、SUM、MIN、MAX、AVG
2、使用PARTITION BY语句,使用一个或者多个原始数据类型的列
3、使用PARTITION BYORDER BY语句,使用一个或者多个数据类型的分区或者排序列
4、使用窗口规范,窗口规范支持以下格式:

(ROWS | RANGE) BETWEEN (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING | CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)
(ROWS | RANGE) BETWEEN CURRENT ROW AND (CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING)
(ROWS | RANGE) BETWEEN [num] FOLLOWING AND (UNBOUNDED | [num]) FOLLOWING

5、当ORDER BY后面缺少窗口从句条件,窗口规范默认是 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.

6、当ORDER BY和窗口从句都缺失, 窗口规范默认是 ROW BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

7、OVER从句支持以下函数, 但是并不支持和窗口一起使用它们。

8、Ranking函数: Rank, NTile, DenseRank, CumeDist, PercentRank.
LeadLag 函数.

1.3 分析函数

  • ROW_NUMBER(): 从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次,ROW_NUMBER()的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。
  • RANK(): 生成数据项在分组中的排名,排名相等会在名次中留下空位
  • DENSE_RANK() :生成数据项在分组中的排名,排名相等会在名次中不会留下空位
  • CUME_DIST: 小于等于当前值的行数/分组内总行数。比如,统计小于等于当前薪水的人数,所占总人数的比例
  • PERCENT_RANK: 分组内当前行的RANK值-1/分组内总行数-1
  • NTILE(n) :用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。
    • NTILE不支持ROWS BETWEEN,
    • 比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)。

2、测试数据集

hive (default)> select * from business;
OK
business.name   business.orderdate      business.cost
jack    2017-01-01      10
tony    2017-01-02      15
jack    2017-02-03      23
tony    2017-01-04      29
jack    2017-01-05      46
jack    2017-04-06      42
tony    2017-01-07      50
jack    2017-01-08      55
mart    2017-04-08      62
mart    2017-04-09      68
neil    2017-05-10      12
mart    2017-04-11      75
neil    2017-06-12      80
mart    2017-04-13      94

3、案例

3.1 COUNT、SUM、MIN、MAX、AVG

select name,orderdate,cost,
-- 所有行相加
sum(cost) over() as c1,
-- 按name分组,组内相加
sum(cost) over(partition by name)  as c1,
-- (默认起点到当前行相加)按name分组,orderdate排序,组内相加
sum(cost) over(partition by name order by orderdate)  as c2,
-- 起点到当前行的
sum(cost) over(partition by name order by orderdate rows between unbounded preceding and current row )  as c3,
-- 当前行+前面2行
sum(cost) over(partition by name order by orderdate rows between 2 preceding and current row )  as c4,
-- 当前行+后面2行
sum(cost) over(partition by name order by orderdate rows between current row and 2 following )  as c5,
-- 前面2行+当前行+后面2行
sum(cost) over(partition by name order by orderdate rows between 2 preceding and 2 following )  as c6,
-- (partition by .. order by)可替换为(distribute by .. sort by ..)
sum(cost) over(partition by name order by orderdate rows between 2 preceding and 2 following )  as c7
from business;

注意:

  • 结果和ORDER BY相关,默认为升序
  • 如果不指定ROWS BETWEEN,默认为从起点到当前行;
  • 如果不指定ORDER BY,则将分组内所有值累加;
  • order by必须跟在partition by后;
  • Rows必须跟在Order by子;
  • (partition by .. order by)可替换为(distribute by .. sort by ..)

理解ROWS BETWEEN含义,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:无界限(起点或终点)
UNBOUNDED PRECEDING:表示从前面的起点
UNBOUNDED FOLLOWING:表示到后面的终点

3.2 first_value与last_value

select name,orderdate,cost,
row_number() over(partition by name order by cost) c1,
-- 正序时:当前行到第一个值之间,第一个值
first_value(cost) over(partition by name order by cost) c2,
-- 正序时:当前行到最后一个值之间,最后一个值
last_value(cost) over(partition by name order by cost) c3,
-- 倒序时:当前行到第一个值之间,第一个值
first_value(cost) over(partition by name order by cost desc) c4,
-- 倒序时:当前行到最后一个值之间,最后一个值
last_value(cost) over(partition by name order by cost desc) c5,
row_number() over(partition by name order by cost desc) c6
from business;

3.3 lead与lag

select name,orderdate,cost,
-- 分组内当前行,往后第一行的值(不包括当前行)
lead(cost) over(partition by name order by cost) c1,
-- 分组内当前行,往后第二行的值(不包括当前行)
lead(cost,2) over(partition by name order by cost) c2,
-- 分组内当前行,往后第二行的值(不包括当前行),如果为null,则用9999代替
lead(cost,2,9999) over(partition by name order by cost) c3,
-- 分组内当前行,往前第一行的值(不包括当前行)
lag(cost) over(partition by name order by cost) c4,
-- 分组内当前行,往前第二行的值(不包括当前行)
lag(cost,2) over(partition by name order by cost) c5,
-- 分组内当前行,往前第二行的值(不包括当前行),如果为null,则用-1代替
lag(cost,2,-1) over(partition by name order by cost) c6
from business;

3.4 RANK、ROW_NUMBER、DENSE_RANK

select 
name,orderdate,cost,c,
-- 自然序号排序,不跳数,不重复
ROW_NUMBER() over(partition by name order by c) c1,
-- 排序相同,中间会跳数,总数不变
RANK() over(partition by name order by c) c2,
-- 排序相同,中间不会跳数,总数会减少
DENSE_RANK() over(partition by name order by c) c3
from(
select name,orderdate,cost,date_format(orderdate,'yyyyMM') c
from business)T;

 

3.5 NTILE

select name,orderdate,cost,
-- 将组内数据分成1片
ntile(1) over(partition by name order by orderdate) c1,
-- 将组内数据分成2片
ntile(2) over(partition by name order by orderdate) c2,
-- 将组内数据分成3片
ntile(3) over(partition by name order by orderdate) c3,
-- 将组内数据分成4片
ntile(4) over(partition by name order by orderdate) c4
from business;

注意:

如果切片不均匀,默认增加第一个切片的分布

例如:

求20%的数据(按时间排序)

select * from(
select name,orderdate,cost,
-- 查询20%时间的订单
ntile(5) over(order by orderdate) c
from business)T where c=1;

3.6 CUME_DIST、PERCENT_RANK

CUME_DIST:

select name,orderdate,cost,
-- 不分组,所有数据为一组,当前行占总行数的比例,
-- 第一行:1/14=0.07142857142857142
-- 第二行:2/14=0.14285714285714285
CUME_DIST() over(order by orderdate) ,
-- 组内,计算当前行的行数/组内总行数
CUME_DIST() over(partition by name order by orderdate)
from business;

 

PERCENT_RANK

select name,orderdate,cost,
-- 按name分组,组内的行数
sum(1) over(partition by name),
-- 所有数据,按时间排序,排名
rank() over(order by orderdate),
-- (排名-1)/(总行数-1-- 第1行:排名1,(1-1)/(14-1)= 0
-- 第2行:排名4,(4-1)/(14-1)= 0.23076923076923078 
-- 第3行:排名6,(6-1)/(14-1)= 0.38461538461538464 
PERCENT_RANK() over(order by orderdate),
-- (组内当前行-1) / (当前组总行-1-- 第1行:(1-1)/(5-1)=0
-- 第2行:(2-1)/(5-1)=0.25
-- 第3行:(3-1)/(5-1)=0.5
PERCENT_RANK() over(partition by name order by orderdate)
from business;

 

posted @ 2020-08-18 17:50  hyunbar  阅读(3407)  评论(0编辑  收藏  举报