Hive常用函数大全(窗口函数、分析函数)
1、相关函数
1.1 窗口函数
- FIRST_VALUE:取分组内排序后,截止到当前行,第一个值
- LAST_VALUE: 取分组内排序后,截止到当前行,最后一个值
- LEAD(col,n,DEFAULT) :用于统计窗口内往后第n行值。
- 第一个参数为列名,
- 第二个参数为往下第n行(可选,默认为1),
- 第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)
- LAG(col,n,DEFAULT) :用于统计窗口内往前第n行值。
- 第一个参数为列名,
- 第二个参数为往上第n行(可选,默认为1),
- 第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)
1.2 OVER从句
1、使用标准的聚合函数COUNT、SUM、MIN、MAX、AVG
2、使用PARTITION BY
语句,使用一个或者多个原始数据类型的列
3、使用PARTITION BY
与ORDER BY
语句,使用一个或者多个数据类型的分区或者排序列
4、使用窗口规范,窗口规范支持以下格式:
(ROWS | RANGE) BETWEEN (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING | CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING) (ROWS | RANGE) BETWEEN CURRENT ROW AND (CURRENT ROW | (UNBOUNDED | [num]) FOLLOWING) (ROWS | RANGE) BETWEEN [num] FOLLOWING AND (UNBOUNDED | [num]) FOLLOWING
5、当ORDER BY
后面缺少窗口从句条件,窗口规范默认是 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
.
6、当ORDER BY
和窗口从句都缺失, 窗口规范默认是 ROW BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
.
7、OVER
从句支持以下函数, 但是并不支持和窗口一起使用它们。
8、Ranking函数: Rank, NTile, DenseRank, CumeDist, PercentRank
.Lead
和 Lag
函数.
1.3 分析函数
- ROW_NUMBER(): 从1开始,按照顺序,生成分组内记录的序列,比如,按照pv降序排列,生成分组内每天的pv名次,ROW_NUMBER()的应用场景非常多,再比如,获取分组内排序第一的记录;获取一个session中的第一条refer等。
- RANK(): 生成数据项在分组中的排名,排名相等会在名次中留下空位
- DENSE_RANK() :生成数据项在分组中的排名,排名相等会在名次中不会留下空位
- CUME_DIST: 小于等于当前值的行数/分组内总行数。比如,统计小于等于当前薪水的人数,所占总人数的比例
- PERCENT_RANK: 分组内当前行的RANK值-1/分组内总行数-1
- NTILE(n) :用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。
- NTILE不支持ROWS BETWEEN,
- 比如
NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)。
2、测试数据集
hive (default)> select * from business; OK business.name business.orderdate business.cost jack 2017-01-01 10 tony 2017-01-02 15 jack 2017-02-03 23 tony 2017-01-04 29 jack 2017-01-05 46 jack 2017-04-06 42 tony 2017-01-07 50 jack 2017-01-08 55 mart 2017-04-08 62 mart 2017-04-09 68 neil 2017-05-10 12 mart 2017-04-11 75 neil 2017-06-12 80 mart 2017-04-13 94
3、案例
3.1 COUNT、SUM、MIN、MAX、AVG
select name,orderdate,cost, -- 所有行相加 sum(cost) over() as c1, -- 按name分组,组内相加 sum(cost) over(partition by name) as c1, -- (默认起点到当前行相加)按name分组,orderdate排序,组内相加 sum(cost) over(partition by name order by orderdate) as c2, -- 起点到当前行的 sum(cost) over(partition by name order by orderdate rows between unbounded preceding and current row ) as c3, -- 当前行+前面2行 sum(cost) over(partition by name order by orderdate rows between 2 preceding and current row ) as c4, -- 当前行+后面2行 sum(cost) over(partition by name order by orderdate rows between current row and 2 following ) as c5, -- 前面2行+当前行+后面2行 sum(cost) over(partition by name order by orderdate rows between 2 preceding and 2 following ) as c6, -- (partition by .. order by)可替换为(distribute by .. sort by ..) sum(cost) over(partition by name order by orderdate rows between 2 preceding and 2 following ) as c7 from business;
注意:
- 结果和ORDER BY相关,默认为升序
- 如果不指定ROWS BETWEEN,默认为从起点到当前行;
- 如果不指定ORDER BY,则将分组内所有值累加;
- order by必须跟在partition by后;
- Rows必须跟在Order by子;
- (partition by .. order by)可替换为(distribute by .. sort by ..)
理解ROWS BETWEEN含义,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:无界限(起点或终点)
UNBOUNDED PRECEDING:表示从前面的起点
UNBOUNDED FOLLOWING:表示到后面的终点
3.2 first_value与last_value
select name,orderdate,cost, row_number() over(partition by name order by cost) c1, -- 正序时:当前行到第一个值之间,第一个值 first_value(cost) over(partition by name order by cost) c2, -- 正序时:当前行到最后一个值之间,最后一个值 last_value(cost) over(partition by name order by cost) c3, -- 倒序时:当前行到第一个值之间,第一个值 first_value(cost) over(partition by name order by cost desc) c4, -- 倒序时:当前行到最后一个值之间,最后一个值 last_value(cost) over(partition by name order by cost desc) c5, row_number() over(partition by name order by cost desc) c6 from business;
3.3 lead与lag
select name,orderdate,cost, -- 分组内当前行,往后第一行的值(不包括当前行) lead(cost) over(partition by name order by cost) c1, -- 分组内当前行,往后第二行的值(不包括当前行) lead(cost,2) over(partition by name order by cost) c2, -- 分组内当前行,往后第二行的值(不包括当前行),如果为null,则用9999代替 lead(cost,2,9999) over(partition by name order by cost) c3, -- 分组内当前行,往前第一行的值(不包括当前行) lag(cost) over(partition by name order by cost) c4, -- 分组内当前行,往前第二行的值(不包括当前行) lag(cost,2) over(partition by name order by cost) c5, -- 分组内当前行,往前第二行的值(不包括当前行),如果为null,则用-1代替 lag(cost,2,-1) over(partition by name order by cost) c6 from business;
3.4 RANK、ROW_NUMBER、DENSE_RANK
select name,orderdate,cost,c, -- 自然序号排序,不跳数,不重复 ROW_NUMBER() over(partition by name order by c) c1, -- 排序相同,中间会跳数,总数不变 RANK() over(partition by name order by c) c2, -- 排序相同,中间不会跳数,总数会减少 DENSE_RANK() over(partition by name order by c) c3 from( select name,orderdate,cost,date_format(orderdate,'yyyyMM') c from business)T;
3.5 NTILE
select name,orderdate,cost, -- 将组内数据分成1片 ntile(1) over(partition by name order by orderdate) c1, -- 将组内数据分成2片 ntile(2) over(partition by name order by orderdate) c2, -- 将组内数据分成3片 ntile(3) over(partition by name order by orderdate) c3, -- 将组内数据分成4片 ntile(4) over(partition by name order by orderdate) c4 from business;
注意:
如果切片不均匀,默认增加第一个切片的分布
例如:
求20%的数据(按时间排序)
select * from( select name,orderdate,cost, -- 查询20%时间的订单 ntile(5) over(order by orderdate) c from business)T where c=1;
3.6 CUME_DIST、PERCENT_RANK
CUME_DIST:
select name,orderdate,cost, -- 不分组,所有数据为一组,当前行占总行数的比例, -- 第一行:1/14=0.07142857142857142 -- 第二行:2/14=0.14285714285714285 CUME_DIST() over(order by orderdate) , -- 组内,计算当前行的行数/组内总行数 CUME_DIST() over(partition by name order by orderdate) from business;
PERCENT_RANK:
select name,orderdate,cost, -- 按name分组,组内的行数 sum(1) over(partition by name), -- 所有数据,按时间排序,排名 rank() over(order by orderdate), -- (排名-1)/(总行数-1) -- 第1行:排名1,(1-1)/(14-1)= 0 -- 第2行:排名4,(4-1)/(14-1)= 0.23076923076923078 -- 第3行:排名6,(6-1)/(14-1)= 0.38461538461538464 PERCENT_RANK() over(order by orderdate), -- (组内当前行-1) / (当前组总行-1) -- 第1行:(1-1)/(5-1)=0 -- 第2行:(2-1)/(5-1)=0.25 -- 第3行:(3-1)/(5-1)=0.5 PERCENT_RANK() over(partition by name order by orderdate) from business;