POJ - 3592 - Instantaneous Transference
先上题目:
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 5461 | Accepted: 1193 |
Description
It was long ago when we played the game Red Alert. There is a magic function for the game objects which is called instantaneous transfer. When an object uses this magic function, it will be transferred to the specified point immediately, regardless of how far it is.
Now there is a mining area, and you are driving an ore-miner truck. Your mission is to take the maximum ores in the field.
The ore area is a rectangle region which is composed by n × m small squares, some of the squares have numbers of ores, while some do not. The ores can't be regenerated after taken.
The starting position of the ore-miner truck is the northwest corner of the field. It must move to the eastern or southern adjacent square, while it can not move to the northern or western adjacent square. And some squares have magic power that can instantaneously transfer the truck to a certain square specified. However, as the captain of the ore-miner truck, you can decide whether to use this magic power or to stay still. One magic power square will never lose its magic power; you can use the magic power whenever you get there.
Input
The first line of the input is an integer T which indicates the number of test cases.
For each of the test case, the first will be two integers N, M (2 ≤ N, M ≤ 40).
The next N lines will describe the map of the mine field. Each of the N lines will be a string that contains M characters. Each character will be an integer X (0 ≤ X ≤ 9) or a '*' or a '#'. The integer X indicates that square hasX units of ores, which your truck could get them all. The '*' indicates this square has a magic power which can transfer truck within an instant. The '#' indicates this square is full of rock and the truck can't move on this square. You can assume that the starting position of the truck will never be a '#' square.
As the map indicates, there are K '*' on the map. Then there follows K lines after the map. The next K lines describe the specified target coordinates for the squares with '*', in the order from north to south then west to east. (the original point is the northwest corner, the coordinate is formatted as north-south, west-east, all from 0 to N - 1,M - 1).
Output
For each test case output the maximum units of ores you can take.
Sample Input
1 2 2 11 1* 0 0
Sample Output
3
Source
1 #include <cstdio> 2 #include <cstring> 3 #include <stack> 4 #include <queue> 5 #define max(x,y) (x >= y ? x : y) 6 #define min(x,y) (x <= y ? x : y) 7 #define MAX 100 8 using namespace std; 9 10 int n,m,index,id; 11 char map[MAX][MAX]; 12 int star[MAX*MAX]; 13 int starnum; 14 int sy[MAX][MAX],sx[MAX][MAX]; 15 int dfn[MAX][MAX],low[MAX][MAX],belong[MAX][MAX]; 16 int val[MAX*MAX]; 17 stack<int> sty,stx; 18 bool instack[MAX][MAX]; 19 int p[MAX*MAX]; 20 typedef struct{ 21 int to; 22 int w; 23 int next; 24 }Edge; 25 Edge e[MAX*MAX*3]; 26 int tot; 27 int dist[MAX*MAX]; 28 int Max; 29 30 void reset(){ 31 index=0; 32 id=0; 33 starnum=0; 34 memset(map,0,sizeof(map)); 35 memset(sy,-1,sizeof(sy)); 36 memset(sx,-1,sizeof(sx)); 37 memset(dfn,-1,sizeof(dfn)); 38 memset(low,-1,sizeof(low)); 39 memset(belong,-1,sizeof(belong)); 40 while(!sty.empty()) sty.pop(); 41 while(!stx.empty()) stx.pop(); 42 memset(val,0,sizeof(val)); 43 memset(instack,0,sizeof(instack)); 44 memset(p,-1,sizeof(p)); 45 memset(e,0,sizeof(e)); 46 tot=0; 47 } 48 49 void add(int u,int v,int w){ 50 e[tot].next=p[u]; e[tot].to=v; e[tot].w=w; p[u]=tot++; 51 } 52 53 void tarjan(int y,int x){ 54 dfn[y][x]=low[y][x]=index++; 55 sty.push(y); 56 stx.push(x); 57 instack[y][x]=1; 58 59 if(y+1<n && map[y+1][x]!='#' && dfn[y+1][x]==-1){ 60 tarjan(y+1,x); 61 low[y][x]=min(low[y][x],low[y+1][x]); 62 }else if(instack[y+1][x]){ 63 low[y][x]=min(low[y][x],dfn[y+1][x]); 64 } 65 66 if(x+1<m && map[y][x+1]!='#' && dfn[y][x+1]==-1){ 67 tarjan(y,x+1); 68 low[y][x]=min(low[y][x],low[y][x+1]); 69 }else if(instack[y][x+1]){ 70 low[y][x]=min(low[y][x],dfn[y][x+1]); 71 } 72 73 if(sy[y][x]!=-1){ 74 if(dfn[sy[y][x]][sx[y][x]]==-1){ 75 tarjan(sy[y][x],sx[y][x]); 76 low[y][x]=min(low[y][x],low[sy[y][x]][sx[y][x]]); 77 }else if(instack[sy[y][x]][sx[y][x]]){ 78 low[y][x]=min(low[y][x],dfn[sy[y][x]][sx[y][x]]); 79 } 80 } 81 82 if(dfn[y][x]==low[y][x]){ 83 int yy,xx; 84 id++; 85 val[id]=0; 86 do{ 87 yy=sty.top(); 88 xx=stx.top(); 89 sty.pop(); 90 stx.pop(); 91 belong[yy][xx]=id; 92 instack[yy][xx]=0; 93 val[id]+=( map[yy][xx]== '*' ? 0 : map[yy][xx]-'0'); 94 }while(y!=yy || x!=xx); 95 } 96 } 97 98 void redraw(){ 99 for(int i=0;i<n;i++){ 100 for(int j=0;j<m;j++){ 101 int u,v; 102 u=belong[i][j]; 103 if(i+1<n && belong[i+1][j]!=-1){ 104 v=belong[i+1][j]; 105 if(u!=v){ 106 add(u,v,val[v]); 107 } 108 } 109 110 if(j+1<m && belong[i][j+1]!=-1){ 111 v=belong[i][j+1]; 112 if(u!=v){ 113 add(u,v,val[v]); 114 } 115 } 116 117 118 if(sy[i][j]!=-1 && belong[sy[i][j]][sx[i][j]]!=-1){ 119 v=belong[sy[i][j]][sx[i][j]]; 120 if(u!=v){ 121 add(u,v,val[v]); 122 } 123 } 124 125 } 126 } 127 } 128 129 void spfa(int a){ 130 bool vin[MAX*MAX]={0}; 131 memset(dist,0,sizeof(dist)); 132 queue<int> q; 133 while(!q.empty()) q.pop(); 134 dist[a]=val[a]; 135 Max=dist[a]; 136 q.push(a); 137 vin[a]=1; 138 while(!q.empty()){ 139 int u=q.front(); 140 q.pop(); 141 vin[u]=0; 142 for(int v=p[u];v!=-1;v=e[v].next){ 143 if(dist[e[v].to]<dist[u]+e[v].w){ 144 dist[e[v].to]=dist[u]+e[v].w; 145 if(!vin[e[v].to]){ 146 q.push(e[v].to); 147 vin[e[v].to]=1; 148 } 149 Max=max(Max,dist[e[v].to]); 150 } 151 } 152 } 153 } 154 155 int main() 156 { 157 int t; 158 //freopen("data.txt","r",stdin); 159 scanf("%d",&t); 160 getchar(); 161 while(t--){ 162 scanf("%d %d",&n,&m); 163 getchar(); 164 reset(); 165 for(int i=0;i<n;i++){ 166 scanf("%s",map[i]); 167 for(int j=0;j<m;j++){ 168 if(map[i][j]=='*'){ 169 star[starnum++]=i*m+j; 170 } 171 } 172 } 173 for(int i=0;i<starnum;i++){ 174 int y,x; 175 scanf("%d %d",&y,&x); 176 getchar(); 177 if(map[y][x]!='#'){ 178 sy[star[i]/m][star[i]%m]=y; 179 sx[star[i]/m][star[i]%m]=x; 180 } 181 } 182 for(int i=0;i<n;i++){ 183 for(int j=0;j<m;j++){ 184 if(map[i][j]!='#' && dfn[i][j]==-1){ 185 tarjan(i,j); 186 } 187 } 188 } 189 redraw(); 190 spfa(belong[0][0]); 191 printf("%d\n",Max); 192 } 193 return 0; 194 }