图形学基础 | 实现OBJ文件的载入
1. tiny_obj_loader.h 的使用
include这个头文件需要先定义一个宏
#define TINYOBJLOADER_IMPLEMENTATION
#include "tiny_obj_loader.h"
1
2
2. tiny_obj_loader.h 中数据结构的介绍
2.1 attrib_t
// Vertex attributes
typedef struct {
std::vector<real_t> vertices; // 'v'
std::vector<real_t> normals; // 'vn'
std::vector<real_t> texcoords; // 'vt'
std::vector<real_t> colors; // extension: vertex colors
} attrib_t;
1
2
3
4
5
6
7
attrib_t 主要存放的就是 OBJ文件中所有的顶点数据信息. 比如:
vertices : 顶点位置信息
normals : 法线信息
texcoords : 纹理坐标信息
colors : 颜色信息
2.2 shape_t
typedef struct {
std::string name;
mesh_t mesh;
path_t path;
} shape_t;
1
2
3
4
5
shape_t 表示的是比如这个物体的一个部分.
在 OBJ文件中, 如 o xxx 表示一个部分的开始.主要存储的信息有:
name : 这部分的名称 xxx
mesh : 构成这个部分的顶点信息. 这里通过使用索引的方式来记录 . 因为所有的数据信息都放在了 attrib_t 中.
path : pairs of indices for lines 按注释的意思是 线段的索引. 可能有问题. 因为没有用到这个.
在这里重点在于 mesh_t 这个数据结构:
// Index struct to support different indices for vtx/normal/texcoord.
// -1 means not used.
typedef struct {
int vertex_index;
int normal_index;
int texcoord_index;
} index_t;
typedef struct {
std::vector<index_t> indices;
std::vector<unsigned char> num_face_vertices; // The number of vertices per
// face. 3 = polygon, 4 = quad,
// ... Up to 255.
std::vector<int> material_ids; // per-face material ID
std::vector<unsigned int> smoothing_group_ids; // per-face smoothing group
// ID(0 = off. positive value
// = group id)
std::vector<tag_t> tags; // SubD tag
} mesh_t;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
索引信息重要放在 std::vector<index_t> indices; 中.
index_t 中是哪些数据信息的索引下标呢:
vertices : 顶点位置信息
normals : 法线信息
texcoords : 纹理坐标信息
3. 通过 tiny_obj_loader.h 读取并存储数据
主要参考了 loader_example.cc 的 PrintInfo(attrib, shapes, materials) 这个函数
bool Object::make_mesh_and_material_by_obj(const char* filename, const char* basepath,bool triangulate){
std::cout << "Loading " << filename << std::endl;
tinyobj::attrib_t attrib; // 所有的数据放在这里
std::vector<tinyobj::shape_t> shapes;
// 一个shape,表示一个部分,
// 其中主要存的是索引坐标 mesh_t类,
// 放在indices中
/*
// -1 means not used.
typedef struct {
int vertex_index;
int normal_index;
int texcoord_index;
} index_t;
*/
std::vector<tinyobj::material_t> materials;
std::string warn;
std::string err;
bool ret = tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, filename,
basepath, triangulate);
// 接下里就是从上面的属性中取值了
if (!warn.empty()) {
std::cout << "WARN: " << warn << std::endl;
}
if (!err.empty()) {
std::cerr << "ERR: " << err << std::endl;
}
if (!ret) {
printf("Failed to load/parse .obj.\n");
return false;
}
// ========================== 将读入的模型数据存入自己定义的数据结构中 ========================
std::cout << "# of vertices : " << (attrib.vertices.size() / 3) << std::endl;
std::cout << "# of normals : " << (attrib.normals.size() / 3) << std::endl;
std::cout << "# of texcoords : " << (attrib.texcoords.size() / 2)
<< std::endl;
std::cout << "# of shapes : " << shapes.size() << std::endl;
std::cout << "# of materials : " << materials.size() << std::endl;
///1. 获取各种材质和纹理
{
for (int i = 0; i < materials.size(); i++) {
Material* m = new Material();
tinyobj::material_t tm = materials[i];
string name = tm.name;
if (name.size()) {
m->name = name;
}
m->ambient.r = tm.ambient[0];
m->ambient.g = tm.ambient[1];
m->ambient.b = tm.ambient[2];
m->diffuse.r = tm.diffuse[0];
m->diffuse.g = tm.diffuse[1];
m->diffuse.b = tm.diffuse[2];
m->specular.r = tm.specular[0];
m->specular.g = tm.specular[1];
m->specular.b = tm.specular[2];
m->transmittance.r = tm.transmittance[0];
m->transmittance.g = tm.transmittance[1];
m->transmittance.b = tm.transmittance[2];
m->emission.r = tm.emission[0];
m->emission.g = tm.emission[1];
m->emission.b = tm.emission[2];
m->shininess = tm.shininess;
m->ior = tm.ior;
m->dissolve = tm.dissolve;
m->illum = tm.illum;
m->pad0 = tm.pad0;
m->ambient_tex_id = -1;
m->diffuse_tex_id = -1;
m->specular_tex_id = -1;
m->specular_highlight_tex_id = -1;
m->bump_tex_id = -1;
m->displacement_tex_id = -1;
m->alpha_tex_id = -1;
m->ambient_texname = "";
m->diffuse_texname = "";
m->specular_texname = "";
m->specular_highlight_texname = "";
m->bump_texname = "";
m->displacement_texname = "";
m->alpha_texname = "";
if (tm.ambient_texname.size()) {
}
if (tm.diffuse_texname.size()) {
}
if (tm.specular_texname.size()) {
}
if (tm.specular_highlight_texname.size()) {
}
if (tm.bump_texname.size()) {
}
if (tm.displacement_texname.size()) {
}
if (tm.alpha_texname.size()) {
}
this->materials.push_back(m);
}
}
/// 2.顶点数据
{
// For each shape 遍历每一个部分
for (size_t i = 0; i < shapes.size(); i++) {
// 这部分的名称
printf("shape[%ld].name = %s\n", static_cast<long>(i),
shapes[i].name.c_str());
// 网格的点数
printf("Size of shape[%ld].mesh.indices: %lu\n", static_cast<long>(i),
static_cast<unsigned long>(shapes[i].mesh.indices.size()));
//printf("Size of shape[%ld].path.indices: %lu\n", static_cast<long>(i),static_cast<unsigned long>(shapes[i].path.indices.size()));
//assert(shapes[i].mesh.num_face_vertices.size() == shapes[i].mesh.material_ids.size());
//assert(shapes[i].mesh.num_face_vertices.size() == shapes[i].mesh.smoothing_group_ids.size());
printf("shape[%ld].num_faces: %lu\n", static_cast<long>(i),
static_cast<unsigned long>(shapes[i].mesh.num_face_vertices.size()));
Model* model = new Model(); // 每一部分的模型数据
// 顶点数量 = face的数量x3
model->mesh_num = shapes[i].mesh.num_face_vertices.size(http://www.my516.com) * 3;
// 开辟空间
Vertex *mesh_data = new Vertex[model->mesh_num];
size_t index_offset = 0;
// For each face
for (size_t f = 0; f < shapes[i].mesh.num_face_vertices.size(); f++) {
size_t fnum = shapes[i].mesh.num_face_vertices[f];
// 获得所索引下标
tinyobj::index_t idx;
int vertex_index[3];
int normal_index[3];
int texcoord_index[3];
for (size_t v = 0; v < fnum; v++) {
idx = shapes[i].mesh.indices[index_offset + v];
vertex_index[v] = idx.vertex_index;
texcoord_index[v] = idx.texcoord_index;
normal_index[v] = idx.normal_index;
}
for (size_t v = 0; v < fnum; v++) {
// v
mesh_data[index_offset + v].pos.x = attrib.vertices[(vertex_index[v]) * 3 + 0];
mesh_data[index_offset + v].pos.y = attrib.vertices[(vertex_index[v]) * 3 + 1];
mesh_data[index_offset + v].pos.z = attrib.vertices[(vertex_index[v]) * 3 + 2];
mesh_data[index_offset + v].pos.w = 1.0f;
// vt
mesh_data[index_offset + v].tc.u = attrib.texcoords[texcoord_index[v] * 2 + 0];
mesh_data[index_offset + v].tc.v = attrib.texcoords[texcoord_index[v] * 2 + 1];
// vn
mesh_data[index_offset + v].normal.x = attrib.normals[normal_index[v] * 3 + 0];
mesh_data[index_offset + v].normal.y = attrib.normals[normal_index[v] * 3 + 1];
mesh_data[index_offset + v].normal.z = attrib.normals[normal_index[v] * 3 + 2];
mesh_data[index_offset + v].normal.w = 1.0f;
// color
mesh_data[index_offset + v].color.r = 1.0f;
mesh_data[index_offset + v].color.g = 1.0f;
mesh_data[index_offset + v].color.b = 1.0f;
mesh_data[index_offset + v].color.a = 1.0f;
}
// 偏移
index_offset += fnum;
}
model->mesh = mesh_data;
models.push_back(model);
}
}
std::cout << "# Loading Complete #"<< std::endl;
//PrintInfo(attrib, shapes, materials);
return true;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
实现结果
meshlab 观看效果.
导入光栅化渲染器的线框模型
---------------------