poj3070 Fibonacci
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
/* 矩阵快速幂裸题 */ #include<iostream> #include<cstdio> #include<string> #include<cstring> #include<algorithm> #define ll long long using namespace std; const int maxn = 30; ll sz,mod,n,f[maxn],a[maxn],ans[maxn]; struct mtx{ ll v[maxn][maxn]; void cler(){ memset(v,0,sizeof(v)); } mtx mul(mtx A,mtx B){ mtx C; C.cler(); for(int i = 1;i <= sz;i++){ for(int j = 1;j <= sz;j++){ for(int k = 1;k <= sz;k++){ C.v[i][j] = (C.v[i][j] + A.v[i][k] * B.v[k][j]) % mod; } } } return C; } mtx mi(mtx A,int n){ mtx R; R.cler(); for(int i = 1;i <= sz;i++) R.v[i][i] = 1; while(n){ if(n&1) R = R.mul(R,A); n >>= 1; A = A.mul(A,A); } return R; } void get_tr(mtx A){ memset(ans,0,sizeof(ans)); for(int i = 1;i <= sz;i++){ for(int j = 1;j <= sz;j++){ ans[j] = (ans[j] + f[i] * A.v[i][j]) % mod; } } } }; int main(){ sz = 2; mod = 10000; f[1] = f[2] = 1; a[1] = a[2] = 1; mtx A; while(1){ cin>>n; if(n == -1){ return 0; } if(n <= 2){ if(n==0) cout<<0<<endl; if(n==1||n==2) cout<<1<<endl; continue; } A.cler(); for(int i = 1;i <= sz;i++) A.v[i][1] = a[i]; for(int i = 2;i <= sz;i++) A.v[i-1][i] = 1; A = A.mi(A,n-sz); A.get_tr(A); cout<<ans[1]<<endl; } return 0; }