水平集算法原理介绍
水平集方法的解释
有一个表面S,它与一个平面P相交,得到一个曲线C,这个C就是我们通过水平集得到的轮廓。
在图像分割中,表面S是随着由图像派生得到的势(force)来更新。
本文的思路是:
1提出问题
2提出解决方法
3方法的局限性
跟踪界面
首先,我们来想象水从一个小山的山顶往下流的画面。我们的目标是,在水往下流的时候,跟踪水前(water front,每一个点的水下一秒流动的方向叫作水前,我们跟踪的是所有点的水前。并且我们的初始条件是,所有初始位置点构成的曲线)。
如下图所示,这是一个V型小山,黑色部分是山顶,越往白色的地方,海拔越低。
红色箭头是水前。
问题来了,如何在给定时间T时刻,得到所有的水前?
显式轮廓方法
一个方法是,跟踪一系列点,沿着它们的法线方向(normal direction)来演化水前,并且猜测水前的停止位置。
如下图所示,在t=0时刻点集的水前位置,当t=1的时候,点集运动到了虚线位置。
显式演化一个点集的水前,听起来是个好主意,但是它有很大的缺陷,使得我们不得不放弃这种可以直观理解的方法。
那究竟是什么缺陷呢?
如下图所示,这个倒V型的曲线,在它的顶端是一个角(corner)。离角最近的那两个点有着各自的水前,它们方向不一致。随着水前的演化,该角最后的状态将无法得知。红色是0时刻的点状态,粉色是1时刻的点状态。
另外,如果水前是向外扩展的,那么初始的点集可能不够用来得到演化后的水前。需要使用插值法或者在演化出现冲突的时候删掉一些点。并且,点之间的距离要保证足够小,才能得到平滑的水前。这种得到演化水前的机制在应用时是很麻烦的。
在应用上,拓扑变化需要关注的问题更多,比如在分裂和合并的情况下。在我们的小山流水的例子中,左图的中间的红色矩形方框是初始点集,圈住的是山顶最高位置,即将向上下的白色山谷流下去。
在右图中,我们看到,初始点集演化到一定阶段,就会分裂,并且分裂后会与本来在山谷里的曲线合并~问题很明白了,这个方法要解决的挑战是,如何确定在分裂时该插入的点,以及在分裂时该删掉的点呢?
所以,追踪点集的水前,尽管是一个很直观的办法,但却有很难解决的缺陷。
隐式轮廓方法
这个方法的本质是演化一个表面S,而不是一个水前曲线C,且我们用隐式轮廓法得到的水前定义为这个表面S在高度h=0的所有点构成的集合(没有删除和插值这么麻烦的事情了,开心~)。于是根据定义,水前曲线就是零水平集φ=0。如下图所示,是从一个演化的表面得到轮廓。
当表面φ(x,y,t)在演化时,它将呈现杯状,过后杯口或将变窄,或将消失。下图中的零水平集显示了轮廓曲线合并和分裂的情况,z=0表示的是山谷。
(a)t=50,合并开始 (b)t=52,合并结束
(c)t=90,分裂开始 (d)t=120,分裂结束
对于拓扑变化,我们不用再过多关注其它问题了。
那么问题在于,我们如何确定函数φ呢?
水平集方程
首先,我们来看看这个方法背后的数学理论~
点x(x,y)属于一个随着时间演化的曲线,x(t)为它在t时刻的位置。在任意时刻t,对于每一个点x(t)都是表面φ在高度为0的曲线上的点,即:
φ(x(t),t) = 0
问题还是,这个函数φ到底是什么呢?
只要它给得出我们需要的零水平集,那么它可以是任何定义。。。(这就糟了,怎么造呢)
举个栗子,上面有一幅图,显示的初始轮廓是一个矩形。该表面的高度等于(x,y)到轮廓上点的最近距离,于是有φ(x,y,t=0)=±d,+d表示在轮廓外,-d表示在轮廓内。只要φ的零水平集可以匹配初始轮廓,那它可以被定义成任何函数。
在时刻t=0处,给定初始函数φ,根据运动方程∂φ/∂t我们可以得到任意t时刻的φ。对于此,利用链式法则,有:
把∂φ/∂x记作▽φ,速度x_t 的方向由表面的法向量给定,因此x_t =F(x(t))n,其中。上面的运动方程可重写为:
最后一个方程定义了φ的运动。给定t=0时的φ以及它随时间演化的运动方程,我们可以通过演化初始函数得知任何t时刻的。这样我们就回答了最初的问题,即我们知道了φ是什么。
φ有个有趣的特征,就是我们可以用下式得到表面的曲率:
我们可以用这个来控制水前曲线的平滑度。
应用
在计算机的世界,图像是具有的像素,而函数需要被离散化。也就是说,在 像素(i,j)处的值由估计。这个梯度由有限差分法(finite difference scheme)来估计,比如下:
其中,对于给定点x,表示左有限差分,表示右有限差分。如下图所示,梯度计算的方式因水前方向的不同而不同,有点差分法也会考虑到水前方向。
于是,之前的运动方程可化作:
从此,我们可以用下式来更新表面:
当我们计算曲率的时候,只依赖于表面φ。于是可以使用中心差分法:
曲率的数值计算可利用下式:
为了使水前曲线平滑,高的曲率应该被惩罚。为了使零水平集扩展,我们不通过减小φ,而是利用高曲率使得水前运动反向。我们可以利用曲率来更新:
结果
给定任意的初始函数φ,比如一个初始轮廓的距离转换,的数值计算方法,我们来展示一些轮廓演化的例子。
第一个小栗子,一滴在扩展的水,前面有一个小障碍物,如下图所示:
水前运动被障碍物停止下来,并被扰动。
下面有个更复杂的例子。
初始轮廓仍旧是个圆~~随着表面的演化,轮廓开始分裂,从第三图可看到已经完全分裂。
下面这个例子,利用真实的图片。不使用连续的正势和负势,有无曲率皆可以,我们利用图像派生出势(force)。这个势值在物体内应该很高,在十分接近物体的边缘时,应该很低(我们是从物体内部去得到它的边缘的)。图像的梯度表现了它的边缘所在。
势可以是上面梯度图像的逆,也可以是它的高斯部分,如下:
λ和σ是控制惩罚因子的参数。下图是使用梯度图像来演化轮廓:
到此为止,你应该了解,水平集方法是关于演化表面的函数,而不是演化曲线的函数~~(尽管我们的目的是得到轮廓)
这也是这个方法的优雅魅力之处!
转自:https://blog.csdn.net/github_35768306/article/details/64129197