动态规划算法适用于解最优化问题。通常可按以下4个步骤进行:

  1.找出最优解的性质,并刻画其结构特征

  2.递归地定义最优质

  3.以自底向上的方式计算出最优值

  4.根据计算最优值时得到的信息,构造最优解

 

举例:矩阵乘法问题

 以两个矩阵相乘为例,A1*A2,A1和A2为两个矩阵,假设A1的行列数是p*q,A2的行列数是q*r。注意这里由于是A1乘以A2,所以A1的列数要等于A2的行数,否则无法做矩阵乘法,满足上述条件的矩阵,我们称之为“相容”的。那么对于A1*A2而言,我们需要分别执行p*r次对应A1的行元素乘以A2的列元素,根据线性代数知识,不难得出我们一共需要执行p*q*r次乘法。

 

        对于两个矩阵相乘,一旦矩阵的大小确定下来了,那么所需执行的乘法次数就确定下来了。那么对于两个以上的矩阵呢?是不是也是这样呢。实际上,对于多个矩阵相乘,乘法执行的次数与“划分”有关。例如:

 

        以矩阵链<A1,A2,A3>为例,假设三个矩阵的规模分别为10X100,100X5和5X50。

 

        ①以((A1*A2)*A3)方式划分,乘法执行次数为:10*100*5+10*5*50=5000+2500=7500次

 

        ②以(A1*(A2*A3))方式划分,乘法执行次数为:100*5*50+10*100*50=25000+50000=75000次

 

        我们可以发现,对于同样的矩阵链<A1,A2,A3>相乘而言,不同的划分,乘法次数居然相差10倍。

二、如何获得最佳的矩阵链乘法划分和最少次数

 

        这里我们需要两个二维数组记录记录是从哪里“断开”(s),记录"每一段"到哪里截止(m)。如下图:

 

 

 

 使用一个长度为n+1的一维数组p来记录每个矩阵的规模,其中n为矩阵下标i的范围1~n,例如对于矩阵Ai而言,它的规模应该是p[i-1]到p[i]。由于i是从1到n取值,所以数组p的下标是从0到n。

 

       用于存储最少乘法执行次数和最佳分段方式的结构是两个二维数组m和s,都是从1~n取值。m[i][j]记录矩阵链<Ai,Ai+1,...,Aj>的最少乘法执行次数,而s[i][j]则记录 最优质m[i][j]的分割点k。

 

       需要注意的一点是当i=j时,m[i][j]=m[i][i]=0,因为一个矩阵不需要任何乘法。

 

       假设矩阵链从Ai到Aj,有j-i+1个矩阵,我们从k处分开,将矩阵链分为Ai~Ak和Ak+1到Aj两块,那么我们可以比较容易的给出m[i][j]从k处分隔的公式:

 

       m[i][j]=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];

 

       在一组确定的i和j值的情况下,要使m[i][j]的值最小,我们只要在所有的k取值中,i<=k<j,寻找一个让m[i][j]最小的值即可。

 

       假设L为矩阵链的长度,那么L=j-i+1。当L=1时,只有一个矩阵,不需要计算。那么我们可以从L=2到n进行循环,对每个合理的i和j值的组合,遍历所有k值对应的m[i][j]值,将最小的一个记录下来,存储到m[i][j]中,并将对应的k存储到s[i][j]中,就得到了我们想要的结果。

   根据上面的分析,不难给出过程的代码,注意这里使用的自底向上的方法:

 1 //Ai矩阵的行列分别是p[i-1]和p[i],1<=i<=n  
 2   
 3 /* 
 4  * 求解最少次数的乘法括号划分方案 
 5  */  
 6 void Matrix_Chain(int* p, int n, int** m, int** s) {  
 7   
 8     //①将对角线上的值先赋值为0  
 9     for (int i = 1; i <= n; i++) {  
10         m[i][i] = 0;  
11     }  
12   
13     int l = 0; //l为矩阵链的长度  
14   
15     //m[i][j]的第一个参数  
16         int i = 0;  
17   
18     //m[i][j]的第二个参数  
19     int j = 0;  
20   
21   
22   
23     int tmp = 0;  
24   
25     //②以长度L为划分,L从2开始到n  
26     for (l = 2; l <= n; l++) {  
27   
28         //循环第一个参数,因为l的长度至少为2,所以i和j在这个循环里面肯定不相等  
29         for (i = 1; i <= n - l + 1; i++) {  
30             //因为j-i+1=l,所以j=l+i-1  
31             j = i + l - 1;  
32   
33             //给m[i][j]赋初值,这里要寻找m[i][j]的最小值,本来应当给m[i][j]赋值一个正无穷,但是这里直接赋一个i=j时候的特值也可以  
34             m[i][j] = m[i][i] + m[i + 1][j] + p[i - 1] * p[i] * p[j];  
35             s[i][j] = i;  
36   
37             //对于每个特定的i和j的组合,遍历此时所有的合适k值,k大于等于i小于j  
38             for (int k = i + 1; k < j; k++) { //这里k不能等于j,因为后面要m[k+1][j],不然k+1就比j大了  
39   
40                 tmp = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];  
41   
42                 if (tmp < m[i][j]) {  
43                     m[i][j] = tmp;  
44                     s[i][j] = k;  
45                 }  
46             }  
47         }  
48     }  
49 }  

经过上面的代码,我们就求得了每种i和j组合对应的最小乘法次数m[i][j]和对应的最佳分割处s[i][j]。

三、输出最优构造划分:

 

       经过运行上面的代码,我们就准备好了s[i][j],其中包含最佳分割信息。我们可以使用一种类似于中序遍历的方法来输出划分方式,比如对<A1,A2,A3,A4,A5>和他们对应的下标数组p而言。

void print_optimal_parens(int** s, int i, int j) {  
    if (i == j) {  
        cout << "A" << i;  
    } else {  
        cout << "(";  
        print_optimal_parens(s, i, s[i][j]);  
        print_optimal_parens(s, s[i][j] + 1, j);  
        cout << ")";  
    }  
}  

比如对于数组p={5,6,2,9,7,6}和<A1,A2,A3,A4,A5>经过上面两段代码的调用,输出划分结果:

 

((A1A2)((A3A4)A5))

 

最少乘法次数为:330次

                            转自:http://blog.csdn.net/cyp331203/article/details/42965237

 

posted on 2017-10-11 20:25  煮咖啡的猪!  阅读(372)  评论(0编辑  收藏  举报