粒子群优化算法论文复现(代码)

  好好学数学。

一.问题来源

  经朋友介绍,帮一个伙计做了下PSO的优化.......赚点生活费而已。

  欢迎大家和我联系做算法类项目,QQ:1198552514

二.背景介绍

2.1 人工生命

  人工生命:研究具有某些生命基本特征的人 工系统。包括两方面的内容:
  1、研究如何利用计算技术研究生物现象;
  2、 研究如何利用生物技术研究计算问题。
  我们关注的是第二点。已有很多源于生物现象的计算技巧,例如神经网络和遗传算法。现在讨论另一种生物系统---社会系统:由简单个体组成的群落和环境及个体之间的相互行为。

2.2 群智能

  模拟系统利用局部信息从而可以产生不可预测的群行为。我们经常能够看到成群的鸟、鱼或者浮游生物。这些生物的聚集行为有利于它们觅食和逃避捕食者。它们的群落动辄以十、百、千甚至万计,并且经常不存在一个统一的指挥者。它们是如何完成聚集、移动这些功能呢?

  Millonas在开发人工生命算法时(1994年),提出群体智能概念并提出五点原则:
  1、接近性原则:群体应能够实现简单的时空计算;
  2、优质性原则:群体能够响应环境要素;
  3、变化相应原则:群体不应把自己的活动限制在一狭小范围;
  4、稳定性原则:群体不应每次随环境改变自己的模式;
  5、适应性原则:群体的模式应在计算代价值得的时候改变。

2.3 模拟群

  对鸟群行为的模拟: Reynolds、Heppner和Grenader提出鸟群行为的 模拟。他们发现,鸟群在行进中会突然同步的改 变方向,散开或者聚集等。那么一定有某种潜在 的能力或规则保证了这些同步的行为。这些科学 家都认为上述行为是基于不可预知的鸟类社会行 为中的群体动态学。 在这些早期的模型中仅仅依赖个体间距的操作, 也就是说,这中同步是鸟群中个体之间努力保持 最优的距离的结果。

  对鱼群行为的研究:生物社会学家E.O.Wilson对鱼群进行了研究。提出:“至少在理论上,鱼群的个体成员能够受益于群体中其他个体在寻找食物的过程中的发现和以前的经验,这种受益超过了个体之间的竞争所带来的利益消耗,不管任何时候食物资源不可预知的分散。”这说明,同种生物之间信息的社会共享能够带来好处。这是PSO的基础。 

三.算法介绍

  粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解.
  PSO的优势在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。

3.1 问题提出

  设想这样一个场景:一群鸟在随机的搜索食物。 在这个区域里只有一块食物,所有的鸟都不知 道食物在那。但是它们知道自己当前的位置距 离食物还有多远。 那么找到食物的最优策略是什么? 最简单有效的就是搜寻目前离食物最近的鸟的 周围区域。

3.2 问题抽象

  鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,粒子I 在N维空间的位置表示为矢量Xi=(x1,x2,…,xN),飞行速度表示为矢量Vi=(v1,v2,…,vN).每个粒子都有一个由目标函数决定的适应值(fitness value),并且知道自己到目前为止发现的最好位置(pbest)和现在的位置Xi.这个可以看作是粒子自己的飞行经验.除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(gbest)(gbest是pbest中的最好值).这个可以看作是粒子同伴的经验.粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动。  

3.3 算法描述

  PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。

  在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

  (我记得Vi需要乘以惯性权重)。

  i=1,2,…,M,M是该群体中粒子的总数;Vi 是粒子的速度; pbest和gbest如前定义; rand()是介于(0、1)之间的随机数; Xi 是粒子的当前位置。 c1和c2是学习因子,通常取c1= c2=2 在每一维,粒子都有一个最大限制速度Vmax,如果 某一维的速度超过设定的Vmax ,那么这一维的速度 就被限定为Vmax 。( Vmax >0) 以上面两个公式为基础,形成了后来PSO 的标准形式。

3.4 算法优化

  1998年shi等人在进化计算的国际会议上 发表了一篇论文《A modified particle swarm optimizer》对前面的公式进行了修正。引入 惯性权重因子。值较大,全局寻优能力强,局部寻优能力弱; 值较小反之。

  初始时,shi将 取为常数,后来实验发现,动 态 能够获得比固定值更好的寻优结果。动态 可以在PSO搜索过程中线性变化,也可根据PSO 性能的某个测度函数动态改变。 目前,采用较多的是shi建议的线性递减权值 (linearly decreasing weight, LDW)策略。

3.4 标准PSO算法流程

  标准PSO算法的流程:

  Step1:初始化一群微粒(群体规模为m),包括随机位置和 速度;

  Step2:评价每个微粒的适应度;

  Step3:对每个微粒,将其适应值与其经过的最好位置 pbest作比较,如果较好,则将其作为当前的 最好位置pbest;

  Step4:对每个微粒,将其适应值与其经过的最好位置 gbest作比较,如果较好,则将其作为当前的 最好位置gbest;

  Step5:根据(2)、(3)式调整微粒速度和位置;

  Step6:未达到结束条件则转Step2。

  迭代终止条件根据具体问题一般选为最大迭代次数Gk或(和)微粒群迄今为止搜索到的最优位置满足预定最小适应阈值。

3.5 参数分析

  方程中pbest和gbest分别表示微粒群的局部和 全局最优位置,当C1=0时,则粒子没有了认知能力, 变为只有社会的模型(social-only):

  被称为全局PSO算法.粒子有扩展搜索空间的能力,具有 较快的收敛速度,但由于缺少局部搜索,对于复杂问题 比标准PSO 更易陷入局部最优。

  当C2=0时,则粒子之间没有社会信息,模型变为 只有认知(cognition-only)模型:

  被称为局部PSO算法。由于个体之间没有信息的 交流,整个群体相当于多个粒子进行盲目的随机 搜索,收敛速度慢,因而得到最优解的可能性小。

  群体规模m 一般取20~40,对较难或特定类别的问题 可以取到100~200。

  最大速度Vmax决定当前位置与最好位置之间的区域的 分辨率(或精度)。如果太快,则粒子有可能越过极小 点;如果太慢,则粒子不能在局部极小点之外进行足 够的探索,会陷入到局部极值区域内。这种限制可以 达到防止计算溢出、决定问题空间搜索的粒度的目的。

  权重因子 包括惯性因子 和学习因子c1和c2。 使粒子 保持着运动惯性,使其具有扩展搜索空间的趋势,有 能力探索新的区域。C1和c2代表将每个粒子推向Pbest 和gbest位置的统计加速项的权值。较低的值允许粒子 在被拉回之前可以在目标区域外徘徊,较高的值导致粒 子突然地冲向或越过目标区域。

四.优化PSO

4.1 引入收敛因子,不要惯性权重

  通常设c1=c2=2。Suganthan的实验表明:c1和c2 为常数时可以得到较好的解,但不一定必须等于2。 Clerc引入收敛因子(constriction factor) K来保证 收敛性。

  通常取 为4.1,则K=0.729.实验表明,与使 用惯性权重的PSO算法相比,使用收敛因子的 PSO有更快的收敛速度。其实只要恰当的选取 和c1、c2,两种算法是一样的。因此使用收 敛因子的PSO可以看作使用惯性权重PSO的特 例。 恰当的选取算法的参数值可以改善算法的性能。

4.2 离散二进制粒子群

  基本PSO是用于实值连续空间,然而许多实际问题是组合 优化问题,因而提出离散形式的PSO。 速度和位置更新式为:

4.3 PSO和GA比较

  共性: (1)都属于仿生算法。 (2) 都属于全局优化方法。 (3) 都属于随机搜索算法。 (4) 都隐含并行性。 (5) 根据个体的适配信息进行搜索,因此不受函数 约束条件的限制,如连续性、可导性等。 (6) 对高维复杂问题,往往会遇到早熟收敛和收敛 性能差的缺点,都无法保证收敛到最优点。

  差异: (1) PSO有记忆,好的解的知识所有粒子都保 存,而GA,以前的知识随着种群的改变被改变。 (2) PSO中的粒子仅仅通过当前搜索到最优点进行共享信息,所以很大程度上这是一种单共享项信息机制。而GA中,染色体之间相互共享信息,使得整个种群都向最优区域移动。 (3) GA的编码技术和遗传操作比较简单,而PSO 相对于GA,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。

  GA可以用来研究NN的三个方面:网络连接权重、网络 结构、学习算法。优势在于可处理传统方法不能处理的 问题,例如不可导的节点传递函数或没有梯度信息。 缺点:在某些问题上性能不是特别好;网络权重的编码和 遗传算子的选择有时较麻烦。 已有利用PSO来进行神经网络训练。研究表明PSO是一 种很有潜力的神经网络算法。速度较快且有较好的结果。 且没有遗传算法碰到的问题。

五.PSO实现

 

  各算法对应的问题如下:

  PSO 用基本粒子群算法求解无约束优化问题
  YSPSO 用带压缩因子的粒子群算法求解无约束优化问题
  LinWPSO 用线性递减权重粒子群优化算法求解无约束优化问题
  SAPSO 用自适应权重粒子群优化算法求解无约束优化问题
  RandWPSO 用随机权重粒子群优化算法求解无约束优化问题
  LnCPSO 用学习因子同步变化的粒子群优化算法求解无约束优化问题
  AsyLnCPSO 用学习因子异步变化的粒子群优化算法求解无约束优化问题
  SecPSO 用二阶粒子群优化算法求解无约束优化问题
  SecVibratPSO 用二阶振荡粒子群优化算法求解无约束优化问题
  CLSPSO 用混沌粒子群优化算法求解无约束优化问题
  SelPSO 用基于选择的粒子群优化算法求解无约束优化问
  BreedPSO 用基于交叉遗传的粒子群优化算法求解无约束优化问
  SimuAPSO 用基于模拟退火的粒子群优化算法求解无约束优化问题

csdn链接(包含了基本PSO和12种优化PSO算法,绝对能用)。

参考文献:西电姚新正老师课件

csdn链接

  再此声明一下,如果您加我,不要再问我懂不懂优化、会不会粒子群,有问题您直接说就好了,每天加我的人太多了,笔者不胜其扰。

 

 

找我要代码可以,但是请不要白嫖行吗? 各种问来问去,愿意出5块钱,或者100块还要考虑几天。

 

1.让我实现一篇论文(论文还得我自己看),聊了半天,就愿意出10块钱,你特码在逗我;
2.让我改进一篇论文,然后给他讲讲论文和代码,再想想创新点实现创新代码,并写出主要步骤画出图,愿意出几百而已;
3.让我完全定题目和创新点并写小论文,然后说完全做好给钱;我原来真这样,给南京某几个学校的两个个学生做完,
讲好的价钱,视频验完,结果不要了。草,我当时真是想给你曝光,当然最后没有曝光。基本诚信都没,我相信你,你却这个样子。
4.脾气臭的屌丝,我耐心引导你理清思路(自己要是思路清晰地话就剩下写代码的事情而已),结果动不动发火。行,你多给点钱也行啊,
结果没过半小时直接把我删了;
5.还有若干博士,让我先给个创新点,各种保证一定给钱,我想着博士嘛,没事。结果我给他讲完,他各种佩服,结果直接把我拉黑了(北京某重点高校)..
上过硕士的都知道idea是最重要的..没idea啥都没

 

还有我不是对女士有意见,而是白嫖的基本都是女生~你要是想着白嫖 就别加我了。比如,找我让我先给她想好研究问题~然后她在确定做不做? 这是什么样的神奇脑回路?再有就是道德绑架(一个经典例子,原话大概是让我给他提高她的粒子群算法,还是C++的,我给她实现了没瘦定金,让她看了。然后赖账,说我要德艺双馨,照顾下学妹~我很生气 但我没吭声,后面就开始骂我~  我真的无法无法理解这类人),好像是我懂这些,我就必须帮她解决她的问题,我缺钱,你咋不把你钱给我呢?还有就是有些女生一身戾气,十分凶~莫名其妙

 

哈还有的商定的价格,压下10%等他全部完毕自己的事情。行,无所谓,我同意。结果我全部搞定后,直接把我删了~你说说就为了那几百多则千百块,诚信都不要了。有些核心地方我不告诉你,你永远不会知道。有的是,发现一些技术不懂后,又把我加了回来,多给一倍的钱~你说何必呢 心胸开阔点

 

一分价钱一分货~大家都不傻~2k有2k的粒子群,5k有5k的粒子群 在满足商量的要求前提下

 

所有行为里面 最最让我反感的就是赖账的~目前我遇到的三个全是女生~  提一个很高的要求,交了一部分定后 做完了玩消失

 

 

 

 

每天都这么多 白嫖党,然后直接就删了~    原来我遇到一个白嫖的 我把他删了  他再加我骂我  我也是服了  遇到这些人 我只能等着他们删我   

 更多时候我是心疼大家,毕竟走到这一步都~ 也希望大家体谅下我  少些白嫖 少些赖账  少些恶语   你的行为是你自身品格的反应 

 

 看见没让我给他idea  我真给了 然后直接玩消失 。这人是清华的~   清北就一定顺利毕业?你是对自己多没自信,还是多么盲目崇拜名校

球球各位天子饺子     有点礼貌可以吗? 上来各种让我讲,让我回答问题,气势汹汹,也不管我在不在忙  我不做义务咨询~ 淘宝大佬很多 可以找淘宝

也麻烦 把我上面发的 遇到的人看一下 

 

尊重一下自己和我的义务劳动行吗?很多关键点你们都不知道,问你们都不回复,不过这也是极个别同学~ 不回复你们把 我其实有很担心你们的毕业  有两个同学找到这,导说做的太简单,不给签字答辩~ 因为你就改革权重 或者c1 c2 从pso提出来就这样的  ,外审都不一定过

 

 

不过 归根结底希望大家  顺利毕业  认为我吹毛求疵   和我 聊不顺的   多找淘宝,有专业客服,语言让你爽到飞起  低于 1000就别找我了 淘宝 闲鱼去吧 “大神”很多

posted @ 2015-05-22 12:36  加拿大小哥哥  阅读(68560)  评论(7编辑  收藏  举报