【Java集合源码剖析】LinkedList源码剖析
转载请注明出处:http://blog.csdn.net/ns_code/article/details/35787253
LinkedList简介
LinkedList是基于双向循环链表(从源码中可以很容易看出)实现的,除了可以当做链表来操作外,它还可以当做栈、队列和双端队列来使用。
LinkedList同样是非线程安全的,只在单线程下适合使用。
LinkedList实现了Serializable接口,因此它支持序列化,能够通过序列化传输,实现了Cloneable接口,能被克隆。
LinkedList源码剖析
LinkedList的源码如下(加入了比较详细的注释):
- package java.util;
- public class LinkedList<E>
- extends AbstractSequentialList<E>
- implements List<E>, Deque<E>, Cloneable, java.io.Serializable
- {
- // 链表的表头,表头不包含任何数据。Entry是个链表类数据结构。
- private transient Entry<E> header = new Entry<E>(null, null, null);
- // LinkedList中元素个数
- private transient int size = 0;
- // 默认构造函数:创建一个空的链表
- public LinkedList() {
- header.next = header.previous = header;
- }
- // 包含“集合”的构造函数:创建一个包含“集合”的LinkedList
- public LinkedList(Collection<? extends E> c) {
- this();
- addAll(c);
- }
- // 获取LinkedList的第一个元素
- public E getFirst() {
- if (size==0)
- throw new NoSuchElementException();
- // 链表的表头header中不包含数据。
- // 这里返回header所指下一个节点所包含的数据。
- return header.next.element;
- }
- // 获取LinkedList的最后一个元素
- public E getLast() {
- if (size==0)
- throw new NoSuchElementException();
- // 由于LinkedList是双向链表;而表头header不包含数据。
- // 因而,这里返回表头header的前一个节点所包含的数据。
- return header.previous.element;
- }
- // 删除LinkedList的第一个元素
- public E removeFirst() {
- return remove(header.next);
- }
- // 删除LinkedList的最后一个元素
- public E removeLast() {
- return remove(header.previous);
- }
- // 将元素添加到LinkedList的起始位置
- public void addFirst(E e) {
- addBefore(e, header.next);
- }
- // 将元素添加到LinkedList的结束位置
- public void addLast(E e) {
- addBefore(e, header);
- }
- // 判断LinkedList是否包含元素(o)
- public boolean contains(Object o) {
- return indexOf(o) != -1;
- }
- // 返回LinkedList的大小
- public int size() {
- return size;
- }
- // 将元素(E)添加到LinkedList中
- public boolean add(E e) {
- // 将节点(节点数据是e)添加到表头(header)之前。
- // 即,将节点添加到双向链表的末端。
- addBefore(e, header);
- return true;
- }
- // 从LinkedList中删除元素(o)
- // 从链表开始查找,如存在元素(o)则删除该元素并返回true;
- // 否则,返回false。
- public boolean remove(Object o) {
- if (o==null) {
- // 若o为null的删除情况
- for (Entry<E> e = header.next; e != header; e = e.next) {
- if (e.element==null) {
- remove(e);
- return true;
- }
- }
- } else {
- // 若o不为null的删除情况
- for (Entry<E> e = header.next; e != header; e = e.next) {
- if (o.equals(e.element)) {
- remove(e);
- return true;
- }
- }
- }
- return false;
- }
- // 将“集合(c)”添加到LinkedList中。
- // 实际上,是从双向链表的末尾开始,将“集合(c)”添加到双向链表中。
- public boolean addAll(Collection<? extends E> c) {
- return addAll(size, c);
- }
- // 从双向链表的index开始,将“集合(c)”添加到双向链表中。
- public boolean addAll(int index, Collection<? extends E> c) {
- if (index < 0 || index > size)
- throw new IndexOutOfBoundsException("Index: "+index+
- ", Size: "+size);
- Object[] a = c.toArray();
- // 获取集合的长度
- int numNew = a.length;
- if (numNew==0)
- return false;
- modCount++;
- // 设置“当前要插入节点的后一个节点”
- Entry<E> successor = (index==size ? header : entry(index));
- // 设置“当前要插入节点的前一个节点”
- Entry<E> predecessor = successor.previous;
- // 将集合(c)全部插入双向链表中
- for (int i=0; i<numNew; i++) {
- Entry<E> e = new Entry<E>((E)a[i], successor, predecessor);
- predecessor.next = e;
- predecessor = e;
- }
- successor.previous = predecessor;
- // 调整LinkedList的实际大小
- size += numNew;
- return true;
- }
- // 清空双向链表
- public void clear() {
- Entry<E> e = header.next;
- // 从表头开始,逐个向后遍历;对遍历到的节点执行一下操作:
- // (01) 设置前一个节点为null
- // (02) 设置当前节点的内容为null
- // (03) 设置后一个节点为“新的当前节点”
- while (e != header) {
- Entry<E> next = e.next;
- e.next = e.previous = null;
- e.element = null;
- e = next;
- }
- header.next = header.previous = header;
- // 设置大小为0
- size = 0;
- modCount++;
- }
- // 返回LinkedList指定位置的元素
- public E get(int index) {
- return entry(index).element;
- }
- // 设置index位置对应的节点的值为element
- public E set(int index, E element) {
- Entry<E> e = entry(index);
- E oldVal = e.element;
- e.element = element;
- return oldVal;
- }
- // 在index前添加节点,且节点的值为element
- public void add(int index, E element) {
- addBefore(element, (index==size ? header : entry(index)));
- }
- // 删除index位置的节点
- public E remove(int index) {
- return remove(entry(index));
- }
- // 获取双向链表中指定位置的节点
- private Entry<E> entry(int index) {
- if (index < 0 || index >= size)
- throw new IndexOutOfBoundsException("Index: "+index+
- ", Size: "+size);
- Entry<E> e = header;
- // 获取index处的节点。
- // 若index < 双向链表长度的1/2,则从前先后查找;
- // 否则,从后向前查找。
- if (index < (size >> 1)) {
- for (int i = 0; i <= index; i++)
- e = e.next;
- } else {
- for (int i = size; i > index; i--)
- e = e.previous;
- }
- return e;
- }
- // 从前向后查找,返回“值为对象(o)的节点对应的索引”
- // 不存在就返回-1
- public int indexOf(Object o) {
- int index = 0;
- if (o==null) {
- for (Entry e = header.next; e != header; e = e.next) {
- if (e.element==null)
- return index;
- index++;
- }
- } else {
- for (Entry e = header.next; e != header; e = e.next) {
- if (o.equals(e.element))
- return index;
- index++;
- }
- }
- return -1;
- }
- // 从后向前查找,返回“值为对象(o)的节点对应的索引”
- // 不存在就返回-1
- public int lastIndexOf(Object o) {
- int index = size;
- if (o==null) {
- for (Entry e = header.previous; e != header; e = e.previous) {
- index--;
- if (e.element==null)
- return index;
- }
- } else {
- for (Entry e = header.previous; e != header; e = e.previous) {
- index--;
- if (o.equals(e.element))
- return index;
- }
- }
- return -1;
- }
- // 返回第一个节点
- // 若LinkedList的大小为0,则返回null
- public E peek() {
- if (size==0)
- return null;
- return getFirst();
- }
- // 返回第一个节点
- // 若LinkedList的大小为0,则抛出异常
- public E element() {
- return getFirst();
- }
- // 删除并返回第一个节点
- // 若LinkedList的大小为0,则返回null
- public E poll() {
- if (size==0)
- return null;
- return removeFirst();
- }
- // 将e添加双向链表末尾
- public boolean offer(E e) {
- return add(e);
- }
- // 将e添加双向链表开头
- public boolean offerFirst(E e) {
- addFirst(e);
- return true;
- }
- // 将e添加双向链表末尾
- public boolean offerLast(E e) {
- addLast(e);
- return true;
- }
- // 返回第一个节点
- // 若LinkedList的大小为0,则返回null
- public E peekFirst() {
- if (size==0)
- return null;
- return getFirst();
- }
- // 返回最后一个节点
- // 若LinkedList的大小为0,则返回null
- public E peekLast() {
- if (size==0)
- return null;
- return getLast();
- }
- // 删除并返回第一个节点
- // 若LinkedList的大小为0,则返回null
- public E pollFirst() {
- if (size==0)
- return null;
- return removeFirst();
- }
- // 删除并返回最后一个节点
- // 若LinkedList的大小为0,则返回null
- public E pollLast() {
- if (size==0)
- return null;
- return removeLast();
- }
- // 将e插入到双向链表开头
- public void push(E e) {
- addFirst(e);
- }
- // 删除并返回第一个节点
- public E pop() {
- return removeFirst();
- }
- // 从LinkedList开始向后查找,删除第一个值为元素(o)的节点
- // 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
- public boolean removeFirstOccurrence(Object o) {
- return remove(o);
- }
- // 从LinkedList末尾向前查找,删除第一个值为元素(o)的节点
- // 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
- public boolean removeLastOccurrence(Object o) {
- if (o==null) {
- for (Entry<E> e = header.previous; e != header; e = e.previous) {
- if (e.element==null) {
- remove(e);
- return true;
- }
- }
- } else {
- for (Entry<E> e = header.previous; e != header; e = e.previous) {
- if (o.equals(e.element)) {
- remove(e);
- return true;
- }
- }
- }
- return false;
- }
- // 返回“index到末尾的全部节点”对应的ListIterator对象(List迭代器)
- public ListIterator<E> listIterator(int index) {
- return new ListItr(index);
- }
- // List迭代器
- private class ListItr implements ListIterator<E> {
- // 上一次返回的节点
- private Entry<E> lastReturned = header;
- // 下一个节点
- private Entry<E> next;
- // 下一个节点对应的索引值
- private int nextIndex;
- // 期望的改变计数。用来实现fail-fast机制。
- private int expectedModCount = modCount;
- // 构造函数。
- // 从index位置开始进行迭代
- ListItr(int index) {
- // index的有效性处理
- if (index < 0 || index > size)
- throw new IndexOutOfBoundsException("Index: "+index+ ", Size: "+size);
- // 若 “index 小于 ‘双向链表长度的一半’”,则从第一个元素开始往后查找;
- // 否则,从最后一个元素往前查找。
- if (index < (size >> 1)) {
- next = header.next;
- for (nextIndex=0; nextIndex<index; nextIndex++)
- next = next.next;
- } else {
- next = header;
- for (nextIndex=size; nextIndex>index; nextIndex--)
- next = next.previous;
- }
- }
- // 是否存在下一个元素
- public boolean hasNext() {
- // 通过元素索引是否等于“双向链表大小”来判断是否达到最后。
- return nextIndex != size;
- }
- // 获取下一个元素
- public E next() {
- checkForComodification();
- if (nextIndex == size)
- throw new NoSuchElementException();
- lastReturned = next;
- // next指向链表的下一个元素
- next = next.next;
- nextIndex++;
- return lastReturned.element;
- }
- // 是否存在上一个元素
- public boolean hasPrevious() {
- // 通过元素索引是否等于0,来判断是否达到开头。
- return nextIndex != 0;
- }
- // 获取上一个元素
- public E previous() {
- if (nextIndex == 0)
- throw new NoSuchElementException();
- // next指向链表的上一个元素
- lastReturned = next = next.previous;
- nextIndex--;
- checkForComodification();
- return lastReturned.element;
- }
- // 获取下一个元素的索引
- public int nextIndex() {
- return nextIndex;
- }
- // 获取上一个元素的索引
- public int previousIndex() {
- return nextIndex-1;
- }
- // 删除当前元素。
- // 删除双向链表中的当前节点
- public void remove() {
- checkForComodification();
- Entry<E> lastNext = lastReturned.next;
- try {
- LinkedList.this.remove(lastReturned);
- } catch (NoSuchElementException e) {
- throw new IllegalStateException();
- }
- if (next==lastReturned)
- next = lastNext;
- else
- nextIndex--;
- lastReturned = header;
- expectedModCount++;
- }
- // 设置当前节点为e
- public void set(E e) {
- if (lastReturned == header)
- throw new IllegalStateException();
- checkForComodification();
- lastReturned.element = e;
- }
- // 将e添加到当前节点的前面
- public void add(E e) {
- checkForComodification();
- lastReturned = header;
- addBefore(e, next);
- nextIndex++;
- expectedModCount++;
- }
- // 判断 “modCount和expectedModCount是否相等”,依次来实现fail-fast机制。
- final void checkForComodification() {
- if (modCount != expectedModCount)
- throw new ConcurrentModificationException();
- }
- }
- // 双向链表的节点所对应的数据结构。
- // 包含3部分:上一节点,下一节点,当前节点值。
- private static class Entry<E> {
- // 当前节点所包含的值
- E element;
- // 下一个节点
- Entry<E> next;
- // 上一个节点
- Entry<E> previous;
- /**
- * 链表节点的构造函数。
- * 参数说明:
- * element —— 节点所包含的数据
- * next —— 下一个节点
- * previous —— 上一个节点
- */
- Entry(E element, Entry<E> next, Entry<E> previous) {
- this.element = element;
- this.next = next;
- this.previous = previous;
- }
- }
- // 将节点(节点数据是e)添加到entry节点之前。
- private Entry<E> addBefore(E e, Entry<E> entry) {
- // 新建节点newEntry,将newEntry插入到节点e之前;并且设置newEntry的数据是e
- Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
- newEntry.previous.next = newEntry;
- newEntry.next.previous = newEntry;
- // 修改LinkedList大小
- size++;
- // 修改LinkedList的修改统计数:用来实现fail-fast机制。
- modCount++;
- return newEntry;
- }
- // 将节点从链表中删除
- private E remove(Entry<E> e) {
- if (e == header)
- throw new NoSuchElementException();
- E result = e.element;
- e.previous.next = e.next;
- e.next.previous = e.previous;
- e.next = e.previous = null;
- e.element = null;
- size--;
- modCount++;
- return result;
- }
- // 反向迭代器
- public Iterator<E> descendingIterator() {
- return new DescendingIterator();
- }
- // 反向迭代器实现类。
- private class DescendingIterator implements Iterator {
- final ListItr itr = new ListItr(size());
- // 反向迭代器是否下一个元素。
- // 实际上是判断双向链表的当前节点是否达到开头
- public boolean hasNext() {
- return itr.hasPrevious();
- }
- // 反向迭代器获取下一个元素。
- // 实际上是获取双向链表的前一个节点
- public E next() {
- return itr.previous();
- }
- // 删除当前节点
- public void remove() {
- itr.remove();
- }
- }
- // 返回LinkedList的Object[]数组
- public Object[] toArray() {
- // 新建Object[]数组
- Object[] result = new Object[size];
- int i = 0;
- // 将链表中所有节点的数据都添加到Object[]数组中
- for (Entry<E> e = header.next; e != header; e = e.next)
- result[i++] = e.element;
- return result;
- }
- // 返回LinkedList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
- public <T> T[] toArray(T[] a) {
- // 若数组a的大小 < LinkedList的元素个数(意味着数组a不能容纳LinkedList中全部元素)
- // 则新建一个T[]数组,T[]的大小为LinkedList大小,并将该T[]赋值给a。
- if (a.length < size)
- a = (T[])java.lang.reflect.Array.newInstance(
- a.getClass().getComponentType(), size);
- // 将链表中所有节点的数据都添加到数组a中
- int i = 0;
- Object[] result = a;
- for (Entry<E> e = header.next; e != header; e = e.next)
- result[i++] = e.element;
- if (a.length > size)
- a[size] = null;
- return a;
- }
- // 克隆函数。返回LinkedList的克隆对象。
- public Object clone() {
- LinkedList<E> clone = null;
- // 克隆一个LinkedList克隆对象
- try {
- clone = (LinkedList<E>) super.clone();
- } catch (CloneNotSupportedException e) {
- throw new InternalError();
- }
- // 新建LinkedList表头节点
- clone.header = new Entry<E>(null, null, null);
- clone.header.next = clone.header.previous = clone.header;
- clone.size = 0;
- clone.modCount = 0;
- // 将链表中所有节点的数据都添加到克隆对象中
- for (Entry<E> e = header.next; e != header; e = e.next)
- clone.add(e.element);
- return clone;
- }
- // java.io.Serializable的写入函数
- // 将LinkedList的“容量,所有的元素值”都写入到输出流中
- private void writeObject(java.io.ObjectOutputStream s)
- throws java.io.IOException {
- // Write out any hidden serialization magic
- s.defaultWriteObject();
- // 写入“容量”
- s.writeInt(size);
- // 将链表中所有节点的数据都写入到输出流中
- for (Entry e = header.next; e != header; e = e.next)
- s.writeObject(e.element);
- }
- // java.io.Serializable的读取函数:根据写入方式反向读出
- // 先将LinkedList的“容量”读出,然后将“所有的元素值”读出
- private void readObject(java.io.ObjectInputStream s)
- throws java.io.IOException, ClassNotFoundException {
- // Read in any hidden serialization magic
- s.defaultReadObject();
- // 从输入流中读取“容量”
- int size = s.readInt();
- // 新建链表表头节点
- header = new Entry<E>(null, null, null);
- header.next = header.previous = header;
- // 从输入流中将“所有的元素值”并逐个添加到链表中
- for (int i=0; i<size; i++)
- addBefore((E)s.readObject(), header);
- }
- }
几点总结
关于LinkedList的源码,给出几点比较重要的总结:
1、从源码中很明显可以看出,LinkedList的实现是基于双向循环链表的,且头结点中不存放数据,如下图;
2、注意两个不同的构造方法。无参构造方法直接建立一个仅包含head节点的空链表,包含Collection的构造方法,先调用无参构造方法建立一个空链表,而后将Collection中的数据加入到链表的尾部后面。
3、在查找和删除某元素时,源码中都划分为该元素为null和不为null两种情况来处理,LinkedList中允许元素为null。
4、LinkedList是基于链表实现的,因此不存在容量不足的问题,所以这里没有扩容的方法。
5、注意源码中的Entry<E> entry(int index)方法。该方法返回双向链表中指定位置处的节点,而链表中是没有下标索引的,要指定位置出的元素,就要遍历该链表,从源码的实现中,我们看到这里有一个加速动作。源 码中先将index与长度size的一半比较,如果index<size/2,就只从位置0往后遍历到位置index处,而如果 index>size/2,就只从位置size往前遍历到位置index处。这样可以减少一部分不必要的遍历,从而提高一定的效率(实际上效率还是 很低)。
6、注意链表类对应的数据结构Entry。如下;
- // 双向链表的节点所对应的数据结构。
- // 包含3部分:上一节点,下一节点,当前节点值。
- private static class Entry<E> {
- // 当前节点所包含的值
- E element;
- // 下一个节点
- Entry<E> next;
- // 上一个节点
- Entry<E> previous;
- /**
- * 链表节点的构造函数。
- * 参数说明:
- * element —— 节点所包含的数据
- * next —— 下一个节点
- * previous —— 上一个节点
- */
- Entry(E element, Entry<E> next, Entry<E> previous) {
- this.element = element;
- this.next = next;
- this.previous = previous;
- }
- }
7、LinkedList是基于链表实现的,因此插入删除效率高,查找效率低(虽然有一个加速动作)。
8、要注意源码中还实现了栈和队列的操作方法,因此也可以作为栈、队列和双端队列来使用。