hdu 5545 The Battle of Guandu spfa最短路

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5545

题意:有N个村庄, M 个战场; $ 1 <=N,M <= 10^5 $;

其中曹操会从第i个村庄中选出若个人 在x[i]战场为其作战, 同时第i个村庄也会有相同的人数在y[i]战场为袁绍作战;

每个战场i 有对应的重要度w[i],w[i]的值为 0,1,2;

w[i]为2的战场,要求曹操的兵数(从村庄得到的) 严格大于 袁绍的兵的数量;

w[i]为1的战场,曹操的兵数不少于袁绍的兵即可;

w[i]为0的兵,没限制要求;

并且每个村庄派出一个兵有对应的花费c[i], 问要使得曹操在所有的战场士兵人数满足上面的要求,曹操至少花费为多少/

 

思路:

以贪心的思想很容易想到应该从重要程度为2的村庄开始考虑,如果村庄 i满足w[i]等于2,那么曹操先往该村庄派遣一个士兵;那么由题意知,在y[i]战场 袁绍的并多了1个;怎么办?

是不是曹操就需要往y[i]战场添加士兵呢?

不一定,需要看y[i]战场的重要程度,如果重要程度为0呢~~

所以只需要**递推**到重要程度为0的战场即可;

那怎么考虑花费最少呢?

以每个村庄的**价格**作为边的权值,求出所有w[i]为2的点到最近的w[j] = 0的最短路即可;

但如果直接建边,以重要度为2的战场作为源点spfa到重要度为0的重点,得到的将是曹操为重要度为0的战场的花费;所以反向建边,开始将W[i] = 0的放入队列即可;

spfa解法:

  1 #pragma comment(linker, "/STACK:1024000000,1024000000")
  2 #include<bits/stdc++.h>
  3 using namespace std;
  4 #define rep0(i,l,r) for(int i = (l);i < (r);i++)
  5 #define rep1(i,l,r) for(int i = (l);i <= (r);i++)
  6 #define rep_0(i,r,l) for(int i = (r);i > (l);i--)
  7 #define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
  8 #define MS0(a) memset(a,0,sizeof(a))
  9 #define MS1(a) memset(a,-1,sizeof(a))
 10 #define MSi(a) memset(a,0x3f,sizeof(a))
 11 #define pb push_back
 12 #define MK make_pair
 13 #define A first
 14 #define B second
 15 #define clear0 (0xFFFFFFFE)
 16 #define inf 0x3f3f3f3f
 17 #define INF 0x3f3f3f3f3f3f3f3f
 18 #define eps 1e-8
 19 #define mod 1000000007
 20 #define zero(x) (((x)>0?(x):-(x))<eps)
 21 #define bitnum(a) __builtin_popcount(a)
 22 #define lowbit(x) (x&(-x))
 23 #define K(x) ((x)*(x))
 24 #define debug(x) printf(" ---- %d\n",x)
 25 typedef pair<int,int> PII;
 26 typedef long long ll;
 27 typedef unsigned int uint;
 28 typedef unsigned long long ull;
 29 template<typename T>
 30 void read1(T &m)
 31 {
 32     T x = 0,f = 1;char ch = getchar();
 33     while(ch <'0' || ch >'9'){ if(ch == '-') f = -1;ch=getchar(); }
 34     while(ch >= '0' && ch <= '9'){ x = x*10 + ch - '0';ch = getchar(); }
 35     m = x*f;
 36 }
 37 template<typename T>
 38 void read2(T &a,T &b){read1(a);read1(b);}
 39 template<typename T>
 40 void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
 41 template<typename T>
 42 void out(T a)
 43 {
 44     if(a>9) out(a/10);
 45     putchar(a%10+'0');
 46 }
 47 inline ll gcd(ll a,ll b){ return b == 0? a: gcd(b,a%b); }
 48 inline ll lcm(ll a,ll b){ return a/gcd(a,b)*b; }
 49 template<class T1, class T2> inline void gmax(T1& a, T2 b){ if(a < b) a = b;}
 50 template<class T1, class T2> inline void gmin(T1& a, T2 b){ if(a > b) a = b;}
 51 const int dx[] = {-1,0,1,0}, dy[] = {0,1,0,-1};
 52 const int maxn = 100007;
 53 int head[maxn], tot;
 54 ll dist[maxn], vs[maxn];
 55 void init(){
 56     MS0(head);
 57     MSi(dist);
 58     tot = 0;
 59 }
 60 struct edge{
 61     int to, w, nxt;
 62 } e[maxn << 1];
 63 
 64 void ins(int u,int v,int w)
 65 {
 66     e[++tot].nxt = head[u];
 67     e[tot].to = v;
 68     e[tot].w = w;
 69     head[u] = tot;
 70 }
 71 int x[maxn], y[maxn], c[maxn], w[maxn];
 72 int que[maxn];
 73 ll build(int n, int m)
 74 {
 75     int h = 0, t = 0;
 76     rep1(i,1,n){
 77         ins(y[i], x[i], c[i]);
 78         if(w[y[i]] == 0 && dist[y[i]] == INF)
 79             que[t++] = y[i], dist[y[i]] = 0;
 80     }
 81     while(h < t){
 82         int u = que[h++]; vs[u] = 0;
 83         for(int id = head[u]; id; id = e[id].nxt){
 84             int v = e[id].to, w = e[id].w;
 85             if(dist[v] > dist[u] + w){
 86                 dist[v] = dist[u] + w;
 87                 if(vs[v] == 0){
 88                     que[t++] = v;
 89                     vs[v] = 1;
 90                 }
 91             }
 92         }
 93     }
 94     ll ans = 0;
 95     for(int i = 1; i <= m; i++) if(w[i] == 2){
 96         if(dist[i] == INF) return -1;
 97         ans += dist[i];
 98     }
 99     return ans;
100 }
101 int main()
102 {
103     //freopen("data.txt","r",stdin);
104     //freopen("out.txt","w",stdout);
105     int T, kase = 1;
106     scanf("%d",&T);
107     while(T--){
108         init();
109         int n, m;
110         read2(n, m);
111         rep1(i,1,n) read1(x[i]);
112         rep1(i,1,n) read1(y[i]);
113         rep1(i,1,n) read1(c[i]);
114         rep1(i,1,m) read1(w[i]);
115         printf("Case #%d: %I64d\n",kase++, build(n, m));
116     }
117     return 0;
118 }

 

posted @ 2016-08-15 15:30  hxer  阅读(378)  评论(0编辑  收藏  举报