【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题
1006: [HNOI2008]神奇的国度
Description
K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在.所谓N边关 系,是指N个人 A1A2...An之间仅存在N对认识关系:(A1A2)(A2A3)...(AnA1),而没有其它认识关系.比如四边关系指ABCD四个人 AB,BC,CD,DA相互认识,而AC,BD不认识.全民比赛时,为了防止做弊,规定任意一对相互认识的人不得在一队,国王相知道,最少可以分多少支 队。
Input
第一行两个整数N,M。1<=N<=10000,1<=M<=1000000.表示有N个人,M对认识关系. 接下来M行每行输入一对朋友
Output
输出一个整数,最少可以分多少队
Sample Input
4 5
1 2
1 4
2 4
2 3
3 4
1 2
1 4
2 4
2 3
3 4
Sample Output
3
HINT
一种方案(1,3)(2)(4)
参考文献:弦图与区间图-陈丹琦
弦图的定义:任何一个长度大于3的环中,至少有一个弦;
使用MCS()求完美消除序列问题;
即先字典序广度优先搜索出之后涂色的点的顺序,(所谓的完美消除就是每次都消除一个三角形)。
lable[i]表示第i个点与多少个已标记的点相连;id[i]表示在第i个完美消除序列中的点是哪个;之后直接涂色即可
#include<iostream> #include<cstdio> #include<cstring> #include<string.h> #include<algorithm> #include<vector> #include<cmath> #include<stdlib.h> #include<time.h> #include<stack> #include<set> #include<map> #include<queue> using namespace std; #define rep0(i,l,r) for(int i = (l);i < (r);i++) #define rep1(i,l,r) for(int i = (l);i <= (r);i++) #define rep_0(i,r,l) for(int i = (r);i > (l);i--) #define rep_1(i,r,l) for(int i = (r);i >= (l);i--) #define MS0(a) memset(a,0,sizeof(a)) #define MS1(a) memset(a,-1,sizeof(a)) #define MSi(a) memset(a,0x3f,sizeof(a)) #define inf 0x3f3f3f3f #define lson l, m, rt << 1 #define rson m+1, r, rt << 1|1 typedef pair<int,int> PII; #define A first #define B second #define MK make_pair //typedef __int64 ll; template<typename T> void read1(T &m) { T x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} m = x*f; } template<typename T> void read2(T &a,T &b){read1(a);read1(b);} template<typename T> void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);} template<typename T> void out(T a) { if(a>9) out(a/10); putchar(a%10+'0'); } const int N = 10005; const int M = 1000005; int tot,head[N]; struct Edge{ int to,Next; }e[M<<1]; void ins(int u,int v) { e[++tot].Next = head[u],e[tot].to = v,head[u] = tot; } priority_queue<PII> pq; int lable[N],id[N],del[N]; void MCS(int n) { MS0(lable); MS0(del); pq.push(MK(0,n));// 每次选未删除的lable最大的进行拓展; while(!pq.empty()){ int u = pq.top().B; pq.pop(); if(del[u]) continue; del[u] = 1;id[n--] = u;// 记录id才是目的,lable只是拓展的依据; for(int t = head[u];t;t = e[t].Next){ int v = e[t].to; if(del[v]) continue; lable[v]++; pq.push(MK(lable[v],v)); } } } int color(int n) { int ans = 0; MS0(lable); rep_1(i,n,1){ int cnt = 1,u = id[i]; for(int t = head[u];t;t = e[t].Next){ int v = e[t].to; if(lable[v]) cnt++; } lable[u] = cnt;// 继续涂色; ans = max(ans,lable[u]); } return ans; } int main() { int n,m,u,v; read2(n,m); rep0(i,0,m){ read2(u,v); ins(u,v);ins(v,u); } MCS(n); out(color(n)); return 0; }