poj 2104 K-th Number 划分树,主席树讲解

K-th Number

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000).
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given.
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.
 
刚学了下划分树,写写理解;
如果有线段树与快排 的基础,很容易能理解划分树的这里讲解得很好
思路:在tree[deep][i]中,下一层是对上一层的一个二叉排序,即左子树中没有大于tree[deep][mid]的,右子树中没有小于tree[deep][mid]的;但是等于的随便在左子树还是在右子树中;在快排中,不需要保存元素之间的前后顺序,所以直接双指针"补空位",但是在寻找第k小时,在同一颗子树中不能改变元素的顺序,所以在建树时,要预先处理出左子树中与[mid]值相等的数的个数即same值;之后直接从ls,rs;(实现细节详见代码)
在查询时,确实就像是线段树的区间查询,只不过这里通过预处理出来的区间[L,R]中每个数到左边界L,即区间[L,i]中在左子树的个数toleft,来缩小区间[left,right];
坑点:我还是使用输出外挂out()来输出结果,可是里面有负数。。。2333
14796K 813ms
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define inf 0x3f3f3f3f
#define lson l, m, rt << 1
#define rson m+1, r, rt << 1|1
typedef __int64 ll;
template<typename T>
void read1(T &m)
{
    T x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
template<typename T>
void out(T a)
{
    if(a>9) out(a/10);
    putchar(a%10+'0');
}
const int N = 1e5+5;
int sorted[N];
int tree[20][N],toleft[20][N];
void build(int l,int r,int deep)
{
    if(l == r) return ;
    int mid = (l + r) >> 1;
    int same = mid - l + 1;
    for(int i = l;i <= r;i++)//左子树中有same个和[mid]相等
        if(tree[deep][i] < sorted[mid])
            same--;
    int ls = l,rs = mid + 1;
    for(int i = l;i <= r;i++){//按顺序将每一个上一层每一个数插入到下一层的左右子树中
        int flag = 1;
        if(tree[deep][i] < sorted[mid] || (tree[deep][i] == sorted[mid] && same > 0)){
            tree[deep+1][ls++] = tree[deep][i];//模拟快排,只是要保持原来的顺序,才设置了ls rs
            if(tree[deep][i] == sorted[mid]) same--;
        }else{
            tree[deep+1][rs++] = tree[deep][i];
            flag = 0;
        }
        toleft[deep][i] = toleft[deep][i-1] + flag; // 递推出[l,i]在左子树中的个数;
    }
    build(l,mid,deep+1);
    build(mid+1,r,deep+1);
}
int query(int left,int right,int k,int L,int R,int deep)
{
    if(left == right)  return tree[deep][left];
    int mid = (L + R) >> 1;
    int x = toleft[deep][left-1] - toleft[deep][L-1];//[L,left-1]在左子树中的个数;
    int y = toleft[deep][right] - toleft[deep][L-1];//[L,right];
    int cnt = y - x;//[left,right]
    if(cnt >= k){
        return query(L+x,L+y-1,k,L,mid,deep+1);//[L,L+x) 正好x个;
    }else{//右孩子起点从mid + 1开始,由于减掉了mid所以
        int rx = left - L - x;// [L,left)在右子树中的个数;
        int ry = right - L - y;//**里面mid减去了(+1-1)
        return query(mid + 1 + rx,mid + 1 + ry,k - cnt,mid + 1,R,deep+1);
    }
}
int main()
{
    int n,q;
    read2(n,q);
    rep1(i,1,n){
        read1(sorted[i]);
        tree[0][i] = sorted[i];
    }
    sort(sorted+1,sorted+n+1);
    build(1,n,0);
    while(q--){
        int a,b,k;
        read3(a,b,k);
        printf("%d\n",query(a,b,k,1,n,0));
    }
    return 0;
}
View Code

主席树还是建立在线段树之上,对于1...i段的数据是建立在第id[i]颗树中;但是直接每个都建完全线段树,空间复杂度为O(n^2);且系数约等于4;那么既然是按照顺序来建树的,为什么不建立在前面的基础之上呢?好,这样就构造出了第0颗树(空树),后面每个i都建立在id[i-1]之上。建立在前一颗线段树之上的具体含义又指的是什么呢(是什么数据要递推呢)?即只是建立一条从该点排序后应该在的叶子节点到根节点的路径,也就是条"树枝"。其余的分支还是用前一颗树的~~并且里面的递推关系很巧妙,即离散化之后,当当前插入的元素的最终位置是在当前节点的左子树时,生成一个左子树的节点(之后递归到左子树),并且这个左子树的节点所代表的值num[]确实要在前一个树的基础上加上当前的这个元素,即num[rt] + 1;这里就是实现对区间的处理;

时间和空间复杂度均为O(n*log(n))  25016K 1407MS

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define inf 0x3f3f3f3f
typedef __int64 ll;
template<typename T>
void read1(T &m)
{
    T x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
template<typename T>
void out(T a)
{
    if(a>9) out(a/10);
    putchar(a%10+'0');
}
const int N = 100005;
const int M = N * 25;
int val[N],sorted[N],m,tot;
int id[M],lson[M],rson[M],num[M];
int build(int l,int r)//第一颗空树根节点id[]标号为0
{
    int newroot = tot++;
    num[newroot] = 0;//建立一颗空树
    if(l == r) return newroot;
    int mid = l + r >> 1;
    lson[newroot] = build(l,mid);
    rson[newroot] = build(mid+1,r);
    return newroot;
}
int idx(int x)
{
    return lower_bound(sorted+1,sorted+1+m,x)-sorted;
}
int update(int pos,int add,int l,int r,int rt)
{
    int newroot = tot++, t = newroot;
    num[newroot] += num[rt] + add;//后一颗树是建立在前一颗树的基础之上
    while(l < r){
        int mid = l + r >> 1;
        if(pos <= mid){
            lson[newroot] = tot++;
            rson[newroot] = rson[rt];
            newroot = lson[newroot];// 由于要更改左右子节点的num[],不好利用递归,而写成了循环结构
            rt = lson[rt];//***对区间的递推
            r = mid;
        }else{
            rson[newroot] = tot++;
            lson[newroot] = lson[rt];
            newroot = rson[newroot];
            rt = rson[rt];
            l = mid + 1;
        }
        num[newroot] += num[rt] + add;
    }
    return t;
}
int query(int ida,int idb,int k,int L,int R)
{
    if(L == R) return L;
    int mid = L + R >> 1,
    cnt = num[lson[idb]] - num[lson[ida]];
    if(cnt >= k){
        return query(lson[ida],lson[idb],k,L,mid);
    }else{
        return query(rson[ida],rson[idb],k - cnt,mid + 1,R);
    }
}
int main()
{
    int n,Q;
    read2(n,Q);
    rep1(i,1,n){
        read1(val[i]);
        sorted[i] = val[i];
    }
    sort(sorted+1,sorted+1+n);
    m = unique(sorted+1,sorted+1+n) - sorted - 1;
    tot = 0;
    id[0] = build(1,m);
    rep1(i,1,n){
        int pos = idx(val[i]);
        id[i] = update(pos,1,1,m,id[i-1]);//在前一颗树id[i-1]的基础上建树(枝);
    }
    while(Q--){
        int a,b,k;
        read3(a,b,k);
        printf("%d\n",sorted[query(id[a-1],id[b],k,1,m)]);
    }
    return 0;
}
View Code

划分树与主席树的总结:

划分树只需要排好序,在后面每层模拟快排中,递推出每一个小区间到左边界在左子树中元素的个数即可;在之后的查询中,直接使用toleft(左区间到该点所在的左子树的个数)递归缩小区间,找到第K小即可;

主席树是线段树的递推,对1..i都建立在前一棵线段树基础之上,查询的时候,只是缩小k值,到只剩一个数时,就是第k小的数了;

 
posted @ 2016-02-23 20:48  hxer  阅读(287)  评论(0编辑  收藏  举报