hdu 3572 Task Schedule

Task Schedule

题意:有N个任务,M台机器。每一个任务给S,P,E分别表示该任务的(最早开始)开始时间,持续时间和(最晚)结束时间;问每一个任务是否能在预定的时间区间内完成;

注:每一个任务一个时间只能由一台机器加工,(意味着可以随意离散加工的时间点,只要所用的时间点之和为P即可;将天数变成点建图)每一台机器一个时间点也只能加工一个任务;

重点是构图:如果将任务抽象成一个点,所需的时间P变成从该点流出的流量(从源点流入边的容量~~)那么只需按照输入顺序标记为点号与源点s连边,边的容量为P即可;但是点的流量又是怎么"流"出去的呢?流出去只是"时间"问题;即一个任务点最多消耗一个时间点,输入的是一个时间区间(区间很小),我们就可以离散化时间点,之后对区间内的时间点进行连边;边权自然是1了;全部的时间点流向汇点t;边权为机器的数量m;即指每天满载运行时,看是否"最大流"能与s(源点)那边的边权之和(一个割,Yes就表示是最小割)相等;

ps:注意在建立时间点连边的时候,时间点不是之间的Si->Ei;而是在前面n个任务之后;所以标号+n;

Dinic算法;296MS  12452K

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define inf 0x3f3f3f3f
typedef __int64 ll;
template<typename T>
void read1(T &m)
{
    T x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
template<typename T>
void out(T a)
{
    if(a>9) out(a/10);
    putchar(a%10+'0');
}
const int N = 1000;
const int M = 101000;
int head[N],tot;
struct Edge{
    int from,to,cap,flow,Next;
    Edge(){}
    Edge(int from,int to,int cap,int Next):from(from),to(to),cap(cap),flow(0),Next(Next){}
}e[M<<1];
inline void ins(int u,int v,int w)
{
    //cout<<" ........... "<<u<<" "<<v<<" "<<w<<endl;
    e[tot] = Edge{u,v,w,head[u]};
    head[u] = tot++;
}
int vis[M],s,t,cur[M],d[M];
queue<int> Q;
int BFS()
{
    rep1(i,s,t) vis[i] = 0;
    vis[s] = 1;d[s] = 0;
    Q.push(s);
    while(!Q.empty()){
        int u = Q.front();Q.pop();
        for(int i = head[u];~i;i = e[i].Next){
            int v = e[i].to;
            if(!vis[v] && e[i].cap > e[i].flow){ // 只考虑残量网络的弧
                vis[v] = 1;
                d[v] = d[u] + 1;
                Q.push(v);
            }
        }
    }
    return vis[t];
}
int DFS(int x,int a)// a表示目前为止所有弧的最小残量
{
    if(x == t || a == 0) return a;
    int& i = cur[x];//回溯时会多次DFS到同一个点
    if(i == 0) i = head[x];
    int flow = 0, f;
    for(;~i;i = e[i].Next){// 从上次考虑的弧开始
        int v = e[i].to;
        if(d[v] == d[x]+1 && (f = DFS(v,min(a,e[i].cap - e[i].flow))) > 0){
            e[i].flow += f;
            e[i^1].flow -= f;
            flow += f;
            a -= f;// 残量-流量
            if(a == 0)   break;
        }
    }
    return flow;
}
int Dinic()
{
    int flow = 0;
    while(BFS()){//在残量网络基础上不断刷新层次图;
        rep1(i,s,t) cur[i] = 0;//记录当前探索到的点的弧的编号
        flow += DFS(s,inf);
    }
    return flow;
}
int main()
{
    int n,m,T,kase = 1;
    read1(T);
    while(T--){
        s = 0;
        int mn = inf,mx = 0,sum = 0;
        MS1(head);tot = 0;
        read2(n,m);
        rep1(i,1,n){
            int P,S,E;
            read3(P,S,E);
            sum += P;
            mn = min(mn,S);
            mx = max(mx,E);
            ins(i,s,P);ins(s,i,P);
            rep1(j,n+S,n+E){//与日期连边的时候要注意标号
                ins(i,j,1);ins(j,i,1);
            }
        }
        t = n+mx+1;
        rep1(i,n+mn,n+mx){
            ins(i,t,m);ins(t,i,m);
        }
        //cout<<mn<<" "<<mx<<endl;
        printf("Case %d: %s",kase++,sum == Dinic()?"Yes":"No");
        puts("");puts("");
    }
    return 0;
}
View Code

ISAP一直处于RE状态。。无语了。上面Dinic代码原本数组是开小了的,但是过了。在ISAP中改好了,却一直RE。不知道还有其他的原因会导致RE..找不出来

先贴一发;若看出bug,直接评论即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
#include<stack>
#include<set>
using namespace std;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define rep_0(i,r,l) for(int i = (r);i > (l);i--)
#define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
#define inf 0x3f3f3f3f
typedef __int64 ll;
template<typename T>
void read1(T &m)
{
    T x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    m = x*f;
}
template<typename T>
void read2(T &a,T &b){read1(a);read1(b);}
template<typename T>
void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
template<typename T>
void out(T a)
{
    if(a>9) out(a/10);
    putchar(a%10+'0');
}
const int N = 1110;
const int M = 505000;
int head[N],tot;
struct Edge{
    int from,to,cap,flow,Next;
    Edge(){}
    Edge(int from,int to,int cap,int Next):from(from),to(to),cap(cap),flow(0),Next(Next){}
}e[M];
inline void ins(int u,int v,int cap)
{
    //cout<<" ........... "<<u<<" "<<v<<" "<<w<<endl;
    e[tot] = Edge{u,v,cap,head[u]};
    head[u] = tot++;
}
int d[N],s,t;
queue<int> Q;
void BFS()//逆向求解到汇点的最短距离;
{
    rep1(i,s,t) d[i] = inf;
    d[t] = 0;
    Q.push(t);
    while(!Q.empty()){
        int v = Q.front();Q.pop();
        for(int i = head[v];~i;i = e[i].Next){
            int u = e[i].to;// 还是to;无向边
            if(d[u] > d[v] + 1 && e[i].cap > e[i].flow){
                d[u] = d[v] + 1;
                Q.push(u);
            }
        }
    }
}
int cur[N],num[N],p[N];
int Augment()
{
    int x = t,a = inf;
    while(x != s){ //从汇点逆推得到可改进量a;
        a = min(a, e[p[x]].cap - e[p[x]].flow);
        x = e[p[x]].from;
    }
    x = t;
    while(x != s){ // 逆推,进行增广
        e[p[x]].flow += a;
        e[p[x]^1].flow -= a;
        x = e[p[x]].from;
    }
    return a;
}
int Maxflow()
{
    BFS();
    MS0(num);
    rep1(i,s,t) num[d[i]]++;
    int x = s,flow = 0;
    MS0(cur);
    while(d[s] < t){
        if(x == t){
            flow += Augment();
            x = s;
        }
        int ok = 0,id = cur[x];
        if(id == 0) id = head[x];
        for(;~id;id = e[id].Next){
            int v = e[id].to;
            if(d[x] == d[v] + 1 && e[id].cap > e[id].flow){
                ok = 1;
                p[v] = id;//前进中记录下路径的标号;以v为索引;
                cur[x] = id;//记录下当前u点的弧,和Dinic一样为了优化
                x = v;
                break;
            }
        }
        if(!ok){//点x没有找到可行的弧,认为原因出在d[]
            if(--num[d[x]] == 0) break;//gap优化 因为d[x] < dist + 1;中间断层
            int dist = t - 1;// **后面dist + 1即当该点在残余网络中没有从x出发的弧,d[x] = t;
            for(int id = head[x];~id;id = e[id].Next){
                if(e[id].cap > e[id].flow)
                    dist = min(dist, d[e[id].to]);
            }            
            num[d[x]=dist+1]++;
            cur[x] = 0;
            if(x != s) x = e[p[x]].from;//往回走是因为可能当前的节点不存在增广路了;
        }
    }
    return flow;
}
int main()
{
    int n,m,T,kase = 1;
    read1(T);
    while(T--){
        s = 0;
        int mn = inf,mx = 0,sum = 0;
        MS1(head);tot = 0;
        read2(n,m);
        rep1(i,1,n){
            int P,S,E;
            read3(P,S,E);
            sum += P;
            mn = min(mn,S);
            mx = max(mx,E);
            ins(i,s,P);ins(s,i,P);
            rep1(j,n+S,n+E){//与日期连边的时候要注意标号
                ins(i,j,1);ins(j,i,1);
            }
        }
        t = n+mx+1;
        rep1(i,n+mn,n+mx){
            ins(i,t,m);ins(t,i,m);
        }
        printf("Case %d: %s",kase++,sum == Maxflow()?"Yes":"No");
        puts("");puts("");
    }
    return 0;
}
View Code
posted @ 2016-02-15 16:47  hxer  阅读(241)  评论(0编辑  收藏  举报